cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A238451 Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 0, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Mircea Merca, Feb 26 2014

Keywords

Examples

			n/k | 1 2 3 4 5 6 7 8 9 10
   1: 0
   2: 0 0
   3: 1 1 0
   4: 1 0 1 0
   5: 1 1 1 1 0
   6: 1 1 0 1 1 0
   7: 1 1 1 1 1 1 0
   8: 1 1 1 0 1 1 1 0
   9: 1 1 1 1 1 1 1 1 0
  10: 2 2 2 2 0 1 1 1 1 0
		

Crossrefs

Columns k=1..6 are A238215, A238217, A238218, A238219, A238220, A238221.
Row sums are A238132.

Programs

  • PARI
    T(n,k) = {my(m=n-k); if(m>0, polcoef(prod(j=1, m, 1+x^j + O(x*x^m))/(1+x^k) - prod(j=1, m, 1-x^j + O(x*x^m))/(1-x^k), m)/2, 0)} \\ Andrew Howroyd, Apr 29 2020

Formula

T(n,k) = Sum_{j=1..round(n/(2*k))} A067659(n-(2*j-1)*k) - Sum_{j=1..floor(n/(2*k))} A067661(n-2*j*k).
G.f. of column k: (1/2)*(q^k/(1+q^k))*(-q;q){inf} - (1/2)*(q^k/(1-q^k))*(q;q){inf}.
T(n,k) = A015716(n,k) - A238450(n,k). - Andrew Howroyd, Apr 29 2020

A015716 Triangle read by rows: T(n,k) is the number of partitions of n into distinct parts, one of which is k (1<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 1, 3, 3, 3, 2, 2, 2, 1, 1, 1, 5, 4, 4, 3, 2, 2, 2, 1, 1, 1, 5, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 8, 7, 6, 6, 4, 4, 4, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Row sums yield A015723. T(n,1)=A025147(n-1); T(n,2)=A015744(n-2); T(n,3)=A015745(n-3); T(n,4)=A015746(n-4); T(n,5)=A015750(n-5). - Emeric Deutsch, Mar 29 2006
Number of parts of size k in all partitions of n into distinct parts. Number of partitions of n-k into distinct parts not including a part of size k. - Franklin T. Adams-Watters, Jan 24 2012

Examples

			T(8,3)=2 because we have [5,3] and [4,3,1].
Triangle begins:
n/k 1 2 3 4 5 6 7 8 9 10
01: 1
02: 0 1
03: 1 1 1
04: 1 0 1 1
05: 1 1 1 1 1
06: 2 2 1 1 1 1
07: 2 2 1 2 1 1 1
08: 3 2 2 1 2 1 1 1
09: 3 3 3 2 2 2 1 1 1
10: 5 4 4 3 2 2 2 1 1 1
...
The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with multiset union {1,1,2,2,3,4,5,6}, with multiplicities (2,2,1,1,1,1), which is row n = 6. - _Gus Wiseman_, May 07 2019
		

Crossrefs

Programs

  • Maple
    g:=product(1+x^j,j=1..50)*sum(t^i*x^i/(1+x^i),i=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 14 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Mar 29 2006
    seq(seq(coeff(x^k*(product(1+x^j, j=1..n))/(1+x^k), x, n), k=1..n), n=1..13); # Mircea Merca, Feb 28 2014
  • Mathematica
    z = 15; d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]; p[n_, k_] := p[n, k] = d[n][[k]]; s[n_] := s[n] = Flatten[Table[p[n, k], {k, 1, PartitionsQ[n]}]]; t[n_, k_] := Count[s[n], k]; u = Table[t[n, k], {n, 1, z}, {k, 1, n}]; TableForm[u] (* A015716 as a triangle *)
    v = Flatten[u] (* A015716 as a sequence *)
    (* Clark Kimberling, Mar 14 2014 *)

Formula

G.f.: G(t,x) = Product_{j>=1} (1+x^j) * Sum_{i>=1} t^i*x^i/(1+x^i). - Emeric Deutsch, Mar 29 2006
From Mircea Merca, Feb 28 2014: (Start)
a(n) = A238450(n) + A238451(n).
T(n,k) = Sum_{j=1..floor(n/k)} (-1)^(j-1)*A000009(n-j*k).
G.f.: for column k: q^k/(1+q^k)*(-q;q)_{inf}. (End)

A238208 The total number of 1's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 24, 28, 33, 38, 45, 52, 60, 69, 80, 91, 105, 120, 137, 156, 178, 202, 230, 261, 295, 334, 378, 426, 481, 542, 609, 685, 769, 862, 966, 1082, 1209, 1351, 1508, 1681, 1873, 2086, 2319, 2578
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).
Or: the number of partitions of n-1 into an even number of distinct parts >=2. - R. J. Mathar, May 11 2016

Examples

			a(10) = 3 because the partitions in question are: 7+2+1, 6+3+1, 5+4+1.
		

Crossrefs

Column k=1 of A238450.

Programs

  • Maple
    A238208 := proc(n)
        local a,L,Lset;
        a := 0 ;
        L := combinat[firstpart](n) ;
        while true do
            # check that parts are distinct
            Lset := convert(L,set) ;
            if nops(L) = nops(Lset) then
                # check that number is odd
                if type(nops(L),'odd') then
                    if 1 in Lset then
                        a := a+1 ;
                    end if;
                end if;
            end if;
            L := combinat[nextpart](L) ;
            if L = FAIL then
                return a;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, May 11 2016
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, t,
         `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t)))
        end:
    a:= n-> b(n-1, 2, 1):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 01 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i+1, t] + b[n-i, i+1, 1-t]]];
    a[n_] := b[n-1, 2, 1];
    a /@ Range[0, 100] (* Jean-François Alcover, May 17 2020, after Alois P. Heinz *)
  • PARI
    seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) + eta(x + A)/(1-x))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/2)} A067661(n-(2*j-1)) - Sum_{j=1..floor(n/2)} A067659(n-2*j).
G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) + (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 17 2020
From Peter Bala, Feb 02 2021: (Start)
a(n+1) = d(n) - ( d(n-1) + d(n-3) ) + ( d(n-4) + d(n-6) + d(n-8) ) - ( d(n-9) + d(n-11) + d(n-13) + d(n-15) ) + ( d(n-16) + d(n-18) + d(n-20) + d(n-22) + d(n-24) ) - ( d(n-25) + d(n-27) + d(n-29) + d(n-31) + d(n-33) + d(n-35) ) + ..., where d(n) = A000009(n) is the number of partitions of n into distinct parts, with the convention that d(n) = 0 for n < 0.
G.f.: x/(1 - x^2)*Sum_{n >= 0} (-1)^n*x^((n^2+n+1-(-1)^n)/2)/Product_{k = 1..n} 1 - x^k.
Alternative g.f.: ( Product_{k >= 1} 1 + x^k ) * x*Sum_{n >= 0} (-1)^n*x^(n^2)*(1 - x^(2*n+2))/(1 - x^2).
Faster converging g.f. (conjecture): Sum_{n >= 0} x^((n+1)*(2*n+1))/ Product_{k = 1..2*n} 1 - x^k. (End)

Extensions

a(51)-a(60) from R. J. Mathar, May 11 2016

A238209 The total number of 2's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 13, 16, 18, 22, 26, 30, 35, 41, 48, 55, 64, 73, 85, 97, 111, 127, 146, 165, 189, 214, 244, 276, 313, 353, 400, 451, 508, 572, 644, 722, 811, 909, 1018, 1139, 1273, 1421, 1586, 1768, 1968, 2191, 2436
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(11) = 3 because the partitions in question are: 8+2+1, 6+3+2, 5+4+2.
		

Crossrefs

Column k=2 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=2}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    seq(n)={my(A=O(x^(n-1))); Vec(x^2*(eta(x^2 + A)/(eta(x + A)*(1+x^2)) + eta(x + A)/(1-x^2))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/4)} A067661(n-(2*j-1)*2) - Sum_{j=1..floor(n/4)} A067659(n-4*j).
G.f.: (1/2)*(x^2/(1+x^2))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^2/(1-x^2))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020

A238210 The total number of 3's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 23, 28, 32, 37, 44, 51, 58, 68, 78, 89, 103, 118, 134, 154, 175, 199, 227, 257, 291, 330, 373, 421, 475, 535, 602, 677, 760, 852, 955, 1069, 1196, 1336, 1491, 1663, 1853, 2063, 2296
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 8+3+1, 7+3+2, 5+4+3.
		

Crossrefs

Column k=3 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=3}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    seq(n)={my(A=O(x^(n-2))); Vec(x^3*(eta(x^2 + A)/(eta(x + A)*(1+x^3)) + eta(x + A)/(1-x^3))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/6)} A067661(n-(2*j-1)*3) - Sum_{j=1..floor(n/6)} A067659(n-6*j).
G.f.: (1/2)*(x^3/(1+x^3))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^3/(1-x^3))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020

A238211 The total number of 4's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 5, 5, 6, 7, 9, 11, 13, 15, 18, 21, 25, 29, 34, 40, 46, 54, 62, 71, 82, 95, 108, 124, 142, 162, 184, 210, 238, 271, 306, 346, 392, 443, 498, 561, 632, 710, 796, 893, 1000, 1120, 1252, 1397, 1560, 1740, 1937, 2156
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 7+4+1, 6+4+2, 5+4+3.
		

Crossrefs

Column k=4 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=4}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/8)} A067661(n-(2*j-1)*4) - Sum_{j=1..floor(n/8)} A067659(n-8*j).
G.f.: (1/2)*(x^4/(1+x^4))*(Product{n>=1} 1 + x^n) + (1/2)*(x^4/(1-x^4))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238212 The total number of 5's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 2, 2, 3, 5, 4, 5, 7, 8, 10, 11, 13, 16, 19, 23, 26, 31, 36, 42, 49, 56, 65, 75, 86, 100, 114, 130, 149, 170, 193, 220, 250, 283, 321, 363, 410, 463, 522, 587, 660, 742, 832, 933, 1045, 1168, 1307, 1459, 1627, 1814, 2020
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 2 because the partitions in question are: 6+5+1, 5+4+3.
		

Crossrefs

Column k=5 of A238450.

Programs

  • Mathematica
    tn5[n_]:=Module[{op=IntegerPartitions[n],m},m=Flatten[Select[op,OddQ[ Length[#]] && Length[#]==Length[Union[#]]&]];Count[m,5]]; Array[tn5,60,0] (* Harvey P. Dale, Feb 06 2015 *)
    nmax = 100; With[{k=5}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/10)} A067661(n-(2*j-1)*5) - Sum_{j=1..floor(n/10)} A067659(n-10*j).
G.f.: (1/2)*(x^5/(1+x^5))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^5/(1-x^5))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238213 The total number of 6's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 17, 20, 23, 27, 33, 38, 44, 51, 59, 68, 79, 91, 104, 119, 136, 155, 178, 202, 230, 261, 296, 335, 379, 428, 483, 544, 612, 688, 773, 867, 972, 1088, 1217, 1360, 1518, 1693, 1887
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 2 because the partitions in question are: 6+5+1, 6+4+2.
		

Crossrefs

Column k=6 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=6}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/12)} A067661(n-(2*j-1)*6) - Sum_{j=1..floor(n/12)} A067659(n-12*j).
G.f.: (1/2)*(x^6/(1+x^6))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^6/(1-x^6))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020
Showing 1-8 of 8 results.