A342985 Triangle read by rows: T(n,k) is the number of tree-rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
1, 0, 0, 0, 2, 0, 0, 3, 3, 0, 0, 4, 36, 4, 0, 0, 5, 135, 135, 5, 0, 0, 6, 360, 1368, 360, 6, 0, 0, 7, 798, 7350, 7350, 798, 7, 0, 0, 8, 1568, 28400, 73700, 28400, 1568, 8, 0, 0, 9, 2826, 89073, 474588, 474588, 89073, 2826, 9, 0, 0, 10, 4770, 241220, 2292790, 4818092, 2292790, 241220, 4770, 10, 0
Offset: 0
Examples
Triangle begins: 1; 0, 0; 0, 2, 0; 0, 3, 3, 0; 0, 4, 36, 4, 0; 0, 5, 135, 135, 5, 0; 0, 6, 360, 1368, 360, 6, 0; 0, 7, 798, 7350, 7350, 798, 7, 0; 0, 8, 1568, 28400, 73700, 28400, 1568, 8, 0; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIIIa.
Crossrefs
Programs
-
PARI
\\ here G(n,y) is A342984 as g.f. F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)} G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))} H(n)={my(g=G(n, y)-x*(1+y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))} { my(T=H(8)); for(n=1, #T, print(T[n])) }
Formula
T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) + x*(1+y) is the g.f. of A342984.
Comments