cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A342980 Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 01 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, columns k without the initial zero term is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,   0;
  0, 1,   1,    0;
  0, 1,   8,    1,     0;
  0, 1,  20,   20,     1,     0;
  0, 1,  38,  131,    38,     1,    0;
  0, 1,  63,  469,   469,    63,    1,   0;
  0, 1,  96, 1262,  3008,  1262,   96,   1, 0;
  0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
  ...
		

Crossrefs

Columns (and diagonals) are A006416, A006417, A006418.
Row sums are A099553(n+1).

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n,y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) = 1 + x*B(x,y) and B(x,y) is the g.f. of A082680.

A342987 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 15, 5, 0, 4, 60, 84, 14, 0, 5, 175, 650, 420, 42, 0, 6, 420, 3324, 5352, 1980, 132, 0, 7, 882, 13020, 42469, 37681, 9009, 429, 0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430, 0, 9, 2970, 118998, 1142622, 3462354, 3711027, 1421226, 175032, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 4*(k-2)+1.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2,    2;
  0, 3,   15,     5;
  0, 4,   60,    84,     14;
  0, 5,  175,   650,    420,     42;
  0, 6,  420,  3324,   5352,   1980,    132;
  0, 7,  882, 13020,  42469,  37681,   9009,   429;
  0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430;
  ...
		

Crossrefs

Columns k=1..4 are A000007, A000027, A006470, A006471.
Diagonals are A000108, A002740, A006432, A006433.
Row sums are A342988.

Programs

  • PARI
    \\ here G(n,y) is A342984 as g.f.
    F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
    G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))}
    H(n)={my(g=G(n,y)-x, v=Vec(sqrt(serreverse(x/g^2)/x))); [Vecrev(t) | t<-v]}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) + x is the g.f. of A342984.

A342984 Triangle read by rows: T(n,k) is the number of nonseparable tree-rooted planar maps with n edges and k faces, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 0, 3, 3, 0, 0, 4, 20, 4, 0, 0, 5, 75, 75, 5, 0, 0, 6, 210, 604, 210, 6, 0, 0, 7, 490, 3150, 3150, 490, 7, 0, 0, 8, 1008, 12480, 27556, 12480, 1008, 8, 0, 0, 9, 1890, 40788, 170793, 170793, 40788, 1890, 9, 0, 0, 10, 3300, 115500, 829920, 1565844, 829920, 115500, 3300, 10, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 2 - k.
A tree-rooted planar map is a planar map with a distinguished spanning tree.
For k >= 2, column k is a polynomial of degree 4*(k-2)+1.

Examples

			Triangle begins:
  1;
  1, 1;
  0, 2,    0;
  0, 3,    3,     0;
  0, 4,   20,     4,     0;
  0, 5,   75,    75,     5,     0;
  0, 6,  210,   604,   210,     6,    0;
  0, 7,  490,  3150,  3150,   490,    7, 0;
  0, 8, 1008, 12480, 27556, 12480, 1008, 8, 0;
  ...
		

Crossrefs

Columns (and diagonals) 3..5 are A006411, A006412, A006413.
Row sums are A004304.

Programs

  • PARI
    \\ here F(n,y) gives A342982 as g.f.
    F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
    H(n)={my(g=F(n,y), v=Vec(subst(g, x, serreverse(x*g^2)))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f. A(x,y) satisfies F(x,y) = A(x*F(x,y)^2,y) where F(x,y) is the g.f. of A342982.

A342986 Number of tree-rooted loopless planar maps with n edges and no isthmuses.

Original entry on oeis.org

1, 0, 2, 6, 44, 280, 2100, 16310, 133652, 1132992, 9895672, 88520520, 808057712, 7504219008, 70730676392, 675328163542, 6521495669380, 63612394972608, 626076210568200, 6211621325369992, 62077602307372720, 624488579671582880, 6320044589443116720, 64313288809475362888
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Crossrefs

Row sums of A342985.

Programs

  • PARI
    \\ here J(n) gives A004304 as g.f.
    J(n)={my(g=(1-sqrt(1-4*x+O(x^3*x^n)))/(2*x), h=serconvol(g, (g-1)/x));sqrt(x/serreverse(x*h^2))}
    seq(n)={my(g=J(n)-2*x, p=O(1)); while(serprec(p, x)<=n, p = subst(g, x, x*p^2)); Vec(p)}

Formula

G.f.: A(x) satisfies A(x) = G(x*A(x)^2) where G(x) + 2*x is the g.f. of A004304.

A006428 Number of loopless tree-rooted planar maps with 3 vertices and n faces and no isthmuses.

Original entry on oeis.org

0, 3, 36, 135, 360, 798, 1568, 2826, 4770, 7645, 11748, 17433, 25116, 35280, 48480, 65348, 86598, 113031, 145540, 185115, 232848, 289938, 357696, 437550, 531050, 639873, 765828, 910861, 1077060, 1266660, 1482048, 1725768, 2000526, 2309195, 2654820, 3040623
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A342985.

Programs

Formula

a(n) seems to be divisible by n+1. - Ralf Stephan, Sep 01 2003
Conjecture (for n > 1): a(n) = n*(n+1)*(n^3+6*n^2+11*n-42) / 24. - Sean A. Irvine, Apr 10 2017
The above conjectures are true. - Andrew Howroyd, Apr 03 2021
From Chai Wah Wu, Aug 08 2022: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 7.
G.f.: x^2*(2*x^5 - 12*x^4 + 30*x^3 - 36*x^2 + 18*x + 3)/(x - 1)^6. (End)

Extensions

Title improved by Sean A. Irvine, Apr 10 2017
Terms a(13) and beyond from Andrew Howroyd, Apr 03 2021

A006429 Number of loopless tree-rooted planar maps with 4 vertices and n faces.

Original entry on oeis.org

0, 4, 135, 1368, 7350, 28400, 89073, 241220, 585057, 1301420, 2699125, 5282172, 9842430, 17584416, 30289835, 50530680, 81940901, 129557940, 200246795, 303220720, 450674190, 658545360, 947426925, 1343646044, 1880535825, 2599922780, 3553856649, 4806611060
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A342985.

Programs

  • Mathematica
    A006429[n_] := If[n == 1, 0, (n*(n + 2)*(n*(n*(n*(n*(n*(n*(13*n + 268) + 2254) + 4900) - 10703) - 62048) + 28596) + 137520))/60480];
    Array[A006429, 50] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    a(n) = if(n < 2, 0, n*(n+2)*(13*n^7+268*n^6+2254*n^5+4900*n^4-10703*n^3-62048*n^2+28596*n+137520) / 60480) \\ Andrew Howroyd, Apr 03 2021

Formula

a(n) = n*(n+2)*(13*n^7+268*n^6+2254*n^5+4900*n^4-10703*n^3-62048*n^2+28596*n+137520) / 60480 for n > 1. - Sean A. Irvine, Apr 10 2017
From Chai Wah Wu, Aug 01 2021: (Start)
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 11.
G.f.: x^2*(-5*x^9 + 50*x^8 - 224*x^7 + 590*x^6 - 995*x^5 + 1100*x^4 - 735*x^3 + 198*x^2 + 95*x + 4)/(x - 1)^10. (End)

Extensions

Title improved by Sean A. Irvine, Apr 10 2017
Terms a(12) and beyond from Andrew Howroyd, Apr 03 2021

A006430 Number of loopless tree-rooted planar maps with 5 vertices and n faces and no isthmuses.

Original entry on oeis.org

0, 5, 360, 7350, 73700, 474588, 2292790, 9046807, 30676440, 92393015, 252872984, 639382605, 1512137536, 3377126024, 7176513960, 14599539314, 28575632350, 54036739617, 99069119952, 176618150000, 306965183268, 521265871700, 866527603370, 1412513294049
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A342985.

Programs

  • Mathematica
    A006430[n_] := If[n == 1, 0, (n*(n + 2)*(n + 3)*(n*(n*(n*(n*(n*(n*(n*(n*(n*(23*n + 963) + 17544) + 147952) + 481675) - 1052153) - 7850914) - 2900162) + 60869272) + 37067400) - 179920800))/79833600];
    Array[A006430, 50] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    a(n)={if(n<2, 0, n*(n + 2)*(n + 3)*(23*n^10 + 963*n^9 + 17544*n^8 + 147952*n^7 + 481675*n^6 - 1052153*n^5 - 7850914*n^4 - 2900162*n^3 + 60869272*n^2 + 37067400*n - 179920800)/(2*11!))} \\ Andrew Howroyd, Apr 03 2021

Formula

a(n) = n*(n + 2)*(n + 3)*(23*n^10 + 963*n^9 + 17544*n^8 + 147952*n^7 + 481675*n^6 - 1052153*n^5 - 7850914*n^4 - 2900162*n^3 + 60869272*n^2 + 37067400*n - 179920800)/(2*11!) for n > 1.

Extensions

Title improved by Sean A. Irvine, Apr 10 2017
Terms a(11) and beyond from Andrew Howroyd, Apr 03 2021
Showing 1-7 of 7 results.