A342980
Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 8, 1, 0;
0, 1, 20, 20, 1, 0;
0, 1, 38, 131, 38, 1, 0;
0, 1, 63, 469, 469, 63, 1, 0;
0, 1, 96, 1262, 3008, 1262, 96, 1, 0;
0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
...
-
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
\\ here G(n,y) gives A082680 as g.f.
G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A342987
Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 15, 5, 0, 4, 60, 84, 14, 0, 5, 175, 650, 420, 42, 0, 6, 420, 3324, 5352, 1980, 132, 0, 7, 882, 13020, 42469, 37681, 9009, 429, 0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430, 0, 9, 2970, 118998, 1142622, 3462354, 3711027, 1421226, 175032, 4862
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 2;
0, 3, 15, 5;
0, 4, 60, 84, 14;
0, 5, 175, 650, 420, 42;
0, 6, 420, 3324, 5352, 1980, 132;
0, 7, 882, 13020, 42469, 37681, 9009, 429;
0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430;
...
-
\\ here G(n,y) is A342984 as g.f.
F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))}
H(n)={my(g=G(n,y)-x, v=Vec(sqrt(serreverse(x/g^2)/x))); [Vecrev(t) | t<-v]}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A342984
Triangle read by rows: T(n,k) is the number of nonseparable tree-rooted planar maps with n edges and k faces, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 1, 1, 0, 2, 0, 0, 3, 3, 0, 0, 4, 20, 4, 0, 0, 5, 75, 75, 5, 0, 0, 6, 210, 604, 210, 6, 0, 0, 7, 490, 3150, 3150, 490, 7, 0, 0, 8, 1008, 12480, 27556, 12480, 1008, 8, 0, 0, 9, 1890, 40788, 170793, 170793, 40788, 1890, 9, 0, 0, 10, 3300, 115500, 829920, 1565844, 829920, 115500, 3300, 10, 0
Offset: 0
Triangle begins:
1;
1, 1;
0, 2, 0;
0, 3, 3, 0;
0, 4, 20, 4, 0;
0, 5, 75, 75, 5, 0;
0, 6, 210, 604, 210, 6, 0;
0, 7, 490, 3150, 3150, 490, 7, 0;
0, 8, 1008, 12480, 27556, 12480, 1008, 8, 0;
...
-
\\ here F(n,y) gives A342982 as g.f.
F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
H(n)={my(g=F(n,y), v=Vec(subst(g, x, serreverse(x*g^2)))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A342986
Number of tree-rooted loopless planar maps with n edges and no isthmuses.
Original entry on oeis.org
1, 0, 2, 6, 44, 280, 2100, 16310, 133652, 1132992, 9895672, 88520520, 808057712, 7504219008, 70730676392, 675328163542, 6521495669380, 63612394972608, 626076210568200, 6211621325369992, 62077602307372720, 624488579671582880, 6320044589443116720, 64313288809475362888
Offset: 0
-
\\ here J(n) gives A004304 as g.f.
J(n)={my(g=(1-sqrt(1-4*x+O(x^3*x^n)))/(2*x), h=serconvol(g, (g-1)/x));sqrt(x/serreverse(x*h^2))}
seq(n)={my(g=J(n)-2*x, p=O(1)); while(serprec(p, x)<=n, p = subst(g, x, x*p^2)); Vec(p)}
A006428
Number of loopless tree-rooted planar maps with 3 vertices and n faces and no isthmuses.
Original entry on oeis.org
0, 3, 36, 135, 360, 798, 1568, 2826, 4770, 7645, 11748, 17433, 25116, 35280, 48480, 65348, 86598, 113031, 145540, 185115, 232848, 289938, 357696, 437550, 531050, 639873, 765828, 910861, 1077060, 1266660, 1482048, 1725768, 2000526, 2309195, 2654820, 3040623
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
A006429
Number of loopless tree-rooted planar maps with 4 vertices and n faces.
Original entry on oeis.org
0, 4, 135, 1368, 7350, 28400, 89073, 241220, 585057, 1301420, 2699125, 5282172, 9842430, 17584416, 30289835, 50530680, 81940901, 129557940, 200246795, 303220720, 450674190, 658545360, 947426925, 1343646044, 1880535825, 2599922780, 3553856649, 4806611060
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
A006429[n_] := If[n == 1, 0, (n*(n + 2)*(n*(n*(n*(n*(n*(n*(13*n + 268) + 2254) + 4900) - 10703) - 62048) + 28596) + 137520))/60480];
Array[A006429, 50] (* Paolo Xausa, Aug 20 2025 *)
-
a(n) = if(n < 2, 0, n*(n+2)*(13*n^7+268*n^6+2254*n^5+4900*n^4-10703*n^3-62048*n^2+28596*n+137520) / 60480) \\ Andrew Howroyd, Apr 03 2021
A006430
Number of loopless tree-rooted planar maps with 5 vertices and n faces and no isthmuses.
Original entry on oeis.org
0, 5, 360, 7350, 73700, 474588, 2292790, 9046807, 30676440, 92393015, 252872984, 639382605, 1512137536, 3377126024, 7176513960, 14599539314, 28575632350, 54036739617, 99069119952, 176618150000, 306965183268, 521265871700, 866527603370, 1412513294049
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
-
A006430[n_] := If[n == 1, 0, (n*(n + 2)*(n + 3)*(n*(n*(n*(n*(n*(n*(n*(n*(n*(23*n + 963) + 17544) + 147952) + 481675) - 1052153) - 7850914) - 2900162) + 60869272) + 37067400) - 179920800))/79833600];
Array[A006430, 50] (* Paolo Xausa, Aug 20 2025 *)
-
a(n)={if(n<2, 0, n*(n + 2)*(n + 3)*(23*n^10 + 963*n^9 + 17544*n^8 + 147952*n^7 + 481675*n^6 - 1052153*n^5 - 7850914*n^4 - 2900162*n^3 + 60869272*n^2 + 37067400*n - 179920800)/(2*11!))} \\ Andrew Howroyd, Apr 03 2021
Showing 1-7 of 7 results.
Comments