cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A342981 Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 02 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.
By duality, also the number of loopless rooted planar maps with n edges and k vertices.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   2;
  0, 1,   7,    5;
  0, 1,  16,   37,    14;
  0, 1,  30,  150,   176,    42;
  0, 1,  50,  449,  1104,   794,   132;
  0, 1,  77, 1113,  4795,  7077,  3473,   429;
  0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
  ...
		

Crossrefs

Columns k=3..4 are A005581, A006468.
Diagonals are A000108, A006419, A006420, A006421.
Row sums are A000260.

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n, y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f. A(x,y) satisfies A(x) = G(x*A(x,y)^2, y) where G(x,y) = 1 + x*y + x*B(x,y) and B(x,y) is the g.f. of A082680.
A027836(n+1) = Sum_{k=1..n+1} k*T(n,k).
A002293(n) = Sum_{k=1..n+1} k*T(n,n+2-k).

A342985 Triangle read by rows: T(n,k) is the number of tree-rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 3, 3, 0, 0, 4, 36, 4, 0, 0, 5, 135, 135, 5, 0, 0, 6, 360, 1368, 360, 6, 0, 0, 7, 798, 7350, 7350, 798, 7, 0, 0, 8, 1568, 28400, 73700, 28400, 1568, 8, 0, 0, 9, 2826, 89073, 474588, 474588, 89073, 2826, 9, 0, 0, 10, 4770, 241220, 2292790, 4818092, 2292790, 241220, 4770, 10, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k without the initial zero term is a polynomial of degree 4*(k-2)+1.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 2,    0;
  0, 3,    3,     0;
  0, 4,   36,     4,     0;
  0, 5,  135,   135,     5,     0;
  0, 6,  360,  1368,   360,     6,    0;
  0, 7,  798,  7350,  7350,   798,    7, 0;
  0, 8, 1568, 28400, 73700, 28400, 1568, 8, 0;
  ...
		

Crossrefs

Columns and diagonals 3..5 are A006428, A006429, A006430.
Row sums are A342986.

Programs

  • PARI
    \\ here G(n,y) is A342984 as g.f.
    F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
    G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))}
    H(n)={my(g=G(n, y)-x*(1+y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) + x*(1+y) is the g.f. of A342984.

A343090 Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without separating cycles or isthmuses, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 4, 10, 47, 10, 20, 240, 240, 20, 35, 831, 2246, 831, 35, 56, 2282, 12656, 12656, 2282, 56, 84, 5362, 52164, 109075, 52164, 5362, 84, 120, 11256, 173776, 648792, 648792, 173776, 11256, 120, 165, 21690, 495820, 2978245, 5360286, 2978245, 495820, 21690, 165
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n-k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
    1;
    4,     4;
   10,    47,     10;
   20,   240,    240,     20;
   35,   831,   2246,    831,     35;
   56,  2282,  12656,  12656,   2282,     56;
   84,  5362,  52164, 109075,  52164,   5362,    84;
  120, 11256, 173776, 648792, 648792, 173776, 11256, 120;
  ...
		

Crossrefs

Columns 1..4 are A000292, A006422, A006423, A006424.
Row sums are A343091.

Programs

  • PARI
    \\ Needs F from A342989.
    G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))}
    H(n, g=1)={my(q=G(n, g, 'y, 'z)-x*(1+'z), v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

Formula

T(n,n-k) = T(n,k).

A099553 Number of rooted 2-connected loopless 4-regular planar maps with n inner faces.

Original entry on oeis.org

1, 2, 10, 42, 209, 1066, 5726, 31688, 180234, 1047356, 6198500, 37253790, 226891665, 1397880330, 8699804598, 54629525808, 345778883678, 2204263514460, 14142192816908, 91263177339092, 592069697914170, 3859674384409668, 25272938482712044
Offset: 3

Views

Author

N. J. A. Sloane, Nov 18 2004

Keywords

Comments

a(n) is also the number of rooted loopless planar maps with n-1 edges and no isthmuses. - Andrew Howroyd, Apr 01 2021
a(n) is also the number of rooted 2-connected plane quadrangulations with n+1 vertices (allowing multiple edges). - Brendan McKay, Apr 08 2025

Examples

			A(x) = x^3 + 2*x^4 + 10*x^5 + 42*x^6 + 209*x^7 + 1066*x^8 + 5726*x^9 + ...
		

Crossrefs

Row sums of A342980.

Programs

  • Maple
    A099553 := proc(n)
        local e;
        e := n-1 ;
        add(binomial(2*e-r,e-2-2*r)*2^r*binomial(2*e,r),r=0..floor(e/2-1)) ;
        %-3*add(binomial(2*e-r,e-3-2*r)*2^r*binomial(2*e,r),r=0..floor((e-3)/2)) ;
        %*2/e ;
    end proc:
    seq(A099553(n),n=3..30) ; # R. J. Mathar, Aug 28 2018
  • Mathematica
    a[n_] := Module[{e, s}, e = n-1; s = Sum[Binomial[2e-r, e-2-2r]*2^r*Binomial[2e, r], {r, 0, Floor[e/2-1]}]; s = s-3*Sum[Binomial[2e-r, e-3-2r]*2^r*Binomial[2e, r], {r, 0, Floor[(e-3)/2]}]; s=2s/e];
    Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Feb 14 2023, after R. J. Mathar *)
  • PARI
    F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z);
    G = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G,'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    seq(N) = Vec(subst(F, 'z, Z(N+3)));
    seq(23)
    \\ test: y = Ser(seq(303))*'x^3; 0 == 8*y^4 + (32*x + 12)*y^3 + (48*x^2 + 23*x + 6)*y^2 + (32*x^3 + 10*x^2 - 10*x + 1)*y + x^3*(8*x - 1)
    \\ Gheorghe Coserea, Jul 13 2018
    
  • PARI
    seq(n)={my(g=1+x*sum(n=1,n,x^n*binomial(3*n, n)*2/((n+1)*(2*n+1))) + O(x*x^n)); Vec(-1 + sqrt(serreverse(x/g^2)/x))} \\ Andrew Howroyd, Apr 06 2021

Formula

From Gheorghe Coserea, Jul 12 2018: (Start)
G.f. A(x) = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z), where z = 1 + 2*x^2 + 6*x^3 + 34*x^4 + 176*x^5 + 1004*x^6 + ... satisfies 0 = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2. (See Theorem D in reference.)
G.f. y=A(x) satisfies:
0 = 8*y^4 + (32*x + 12)*y^3 + (48*x^2 + 23*x + 6)*y^2 + (32*x^3 + 10*x^2 - 10*x + 1)*y + x^3*(8*x - 1).
0 = x^3*(2*x + 1)*(49*x - 18)*(196*x - 27)*y'''' + x^2*(96040*x^3 - 27587*x^2 - 9297*x + 972)*y''' + (72030*x^4 - 36309*x^3 + 2010*x^2 - 864*x)*y'' - 6*(8*x + 3)*(49*x + 12)*y' + (2352*x + 576)*y.
(End)
Conjecture: 3*n *(3*n-1) *(5*n-8) *(3*n-2)*a(n) -(n-2) *(2*n-3) *(355*n^2 -703*n +300)*a(n-1) -98*(n-2) *(5*n-3) *(2*n-3) *(2*n-5) *a(n-2)=0. - R. J. Mathar, Aug 28 2018
G.f.: x*(A(x) - 1) where A(x) satisfies A(x) = G(x*A(x)^2) and (G(x) + 2*x - 1)/x is the g.f. of A000139. - Andrew Howroyd, Apr 06 2021

A006416 Number of loopless rooted planar maps with 3 faces and n vertices and no isthmuses. Also a(n)=T(4,n-3), array T as in A049600.

Original entry on oeis.org

1, 8, 20, 38, 63, 96, 138, 190, 253, 328, 416, 518, 635, 768, 918, 1086, 1273, 1480, 1708, 1958, 2231, 2528, 2850, 3198, 3573, 3976, 4408, 4870, 5363, 5888, 6446, 7038, 7665, 8328, 9028, 9766, 10543, 11360, 12218, 13118, 14061, 15048
Offset: 2

Views

Author

Keywords

Comments

If Y_i (i=1,2,3) are 2-blocks of an n-set X then, for n>=6, a(n-3) is the number of (n-3)-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Nov 09 2007
a(n) is also the number of triangle subgraphs in a complete graph on n+3 vertices, minus 3 non-incident edges, for n > 2. - Robert H Cowen, Jun 23 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A342980.
Cf. A049600.

Programs

  • Maple
    A006416:=(1+4*z-6*z**2+2*z**3)/(z-1)**4; # Conjectured by Simon Plouffe in his 1992 dissertation.
    a := n -> hypergeom([-3, n-2], [1], -1);
    seq(round(evalf(a(n),32)), n=2..41); # Peter Luschny, Aug 02 2014
  • Mathematica
    f[n_]:=Sum[i+i^2-6,{i,1,n}]/2;Table[f[n],{n,3,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
    CoefficientList[Series[(1+4x-6x^2+2x^3)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{1,8,20,38},50] (* Harvey P. Dale, Aug 25 2013 *)
    f[n_]:= Binomial[n,3] - 3(n-2); Table[{n,f[n]},{n,5,100}]//TableForm (* Robert H Cowen, Jun 23 2018 *)
  • PARI
    Vec((1+4*x-6*x^2+2*x^3)/(1-x)^4 + O(x^40)) \\ Andrew Howroyd, Jul 15 2018

Formula

G.f.: x^2*(1+4*x-6*x^2+2*x^3)/(1-x)^4.
a(n-3) = (1/6)*n^3-(1/2)*n^2-(8/3)*n+6, n=6,7,... - Milan Janjic, Nov 09 2007
a(2)=1, a(3)=8, a(4)=20, a(5)=38, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Aug 25 2013
a(n+2) = Hyper2F1([-3, n], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = binomial(n+3, 3) - 3*(n+1). - Robert H Cowen, Jun 23 2018

Extensions

Name clarified by Andrew Howroyd, Apr 01 2021

A006417 Number of loopless rooted planar maps with 4 faces and n vertices and no isthmuses.

Original entry on oeis.org

1, 20, 131, 469, 1262, 2862, 5780, 10725, 18647, 30784, 48713, 74405, 110284, 159290, 224946, 311429, 423645, 567308, 749023, 976373, 1258010, 1603750, 2024672, 2533221, 3143315, 3870456, 4731845, 5746501, 6935384, 8321522, 9930142, 11788805, 13927545, 16379012
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A342980.

Programs

  • PARI
    a(n)={if(n<2, 0, (2*n^6 + 39*n^5 + 125*n^4 - 345*n^3 - 1027*n^2 + 846*n + 2160)/360)} \\ Andrew Howroyd, Apr 01 2021

Formula

From Colin Barker, Apr 08 2013: (Start)
a(n) = (2160+846*n-1027*n^2-345*n^3+125*n^4+39*n^5+2*n^6)/360.
G.f.: -x^2*(5*x^6-29*x^5+65*x^4-63*x^3+12*x^2+13*x+1) / (x-1)^7. (End)
E.g.f.: exp(x)*(2160 - 360*x - 540*x^2 + 1560*x^3 + 645*x^4 + 69*x^5 + 2*x^6)/360 - 6 - 5*x. - Stefano Spezia, Jul 18 2024

Extensions

Title improved by Sean A. Irvine, Apr 03 2017
Terms a(14) and beyond from Andrew Howroyd, Apr 01 2021

A006418 Number of loopless rooted planar maps with 5 faces and n vertices and no isthmuses.

Original entry on oeis.org

1, 38, 469, 3008, 12843, 42602, 119042, 293578, 658021, 1367170, 2670203, 4953136, 8794967, 15040494, 24893192, 40031954, 62755945, 96162286, 144361777, 212738384, 308258755, 439838594, 618773310, 859240970, 1178886221, 1599494506, 2147766583, 2856204064
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A342980.

Programs

  • PARI
    a(n)={if(n<2, 0, (2*n^9 + 81*n^8 + 918*n^7 + 2142*n^6 - 11886*n^5 - 42651*n^4 + 65182*n^3 + 282348*n^2 - 114696*n - 604800)/30240)} \\ Andrew Howroyd, Apr 01 2021

Formula

G.f.: x^2 * (14*x^9 -120*x^8 +440*x^7 -879*x^6 +980*x^5 -482*x^4 -92*x^3 +134*x^2 +28*x+1) / (x-1)^10. - Colin Barker, Apr 09 2013

Extensions

Name clarified and terms a(13) and beyond from Andrew Howroyd, Apr 01 2021
Showing 1-7 of 7 results.