cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000260 Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices.

Original entry on oeis.org

1, 1, 3, 13, 68, 399, 2530, 16965, 118668, 857956, 6369883, 48336171, 373537388, 2931682810, 23317105140, 187606350645, 1524813969276, 12504654858828, 103367824774012, 860593023907540, 7211115497448720, 60776550501588855
Offset: 0

Views

Author

Keywords

Comments

Number of rooted loopless planar maps with n edges. E.g., there are a(2)=3 loopless planar maps with 2 edges: two rooted paths (.-.-.) and one digon (.=.). - Valery A. Liskovets, Sep 25 2003
Number of intervals (i.e., ordered pairs (x,y) such that x<=y) in the Tamari lattice (rotation lattice of binary trees) of size n (see Pallo and Chapoton references). - Ralf Stephan, May 08 2007, Jean Pallo (Jean.Pallo(AT)u-bourgogne.fr), Sep 11 2007
Number of rooted triangulations of type [n, 0] (see Brown paper eq (4.8)). - Michel Marcus, Jun 23 2013
Equivalently, number of rooted bridgeless planar maps with n edges. - Noam Zeilberger, Oct 06 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
Number of uniquely sorted permutations of [2n+1] that avoid the pattern 231. Also the number of uniquely sorted permutations of [2n+1] that avoid 132. - Colin Defant, Jun 13 2019
The sequence 1,3,13,68,... appears naturally in integral geometry, namely in the algebra of unitarily invariant valuations on complex space forms. - Andreas Bernig, Feb 02 2020

Examples

			G.f. = 1 + x + 3*x^2 + 13*x^3 + 68*x^4 + 399*x^5 + 2530*x^6 + 16965*x^7 + ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • Handbook of Combinatorics, North-Holland '95, p. 891.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, The enumerative theory of planar maps, in A Survey of Combinatorial Theory (J. N. Srivastava et al. eds.), pp. 437-448, North-Holland, Amsterdam, 1973.

Crossrefs

Row sums of A342981.
Column 0 of A146305 and A341856; Column 2 of A255918.
Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • Magma
    [Binomial(4*n+1, n+1)-9*Binomial(4*n+1, n-1): n in [0..25]]; // Vincenzo Librandi, Nov 24 2016
  • Maple
    A000260 := proc(n)
        2*(4*n+1)!/((n+1)!*(3*n+2)!) ;
    end proc:
  • Mathematica
    Table[Binomial[4n+1,n+1]-9*Binomial[4n+1,n-1],{n,0,25}] (* Harvey P. Dale, Aug 23 2011 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 3/4, 1, 5/4}, {4/3, 5/3, 2}, 256/27 x], {x, 0, n}]; (* Michael Somos, Dec 23 2014 *)
    terms = 22; G[] = 0; Do[G[x] = 1+x*G[x]^4 + O[x]^terms, terms];
    CoefficientList[(2-G[x])*G[x]^2, x] (* Jean-François Alcover, Jan 13 2018, after Mark van Hoeij *)
  • PARI
    {a(n) = if( n<0, 0, 2 * (4*n + 1)! / ((n + 1)! * (3*n + 2)!))}; /* Michael Somos, Sep 07 2005 */
    
  • PARI
    {a(n) = binomial( 4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2))}; /* Michael Somos, Mar 28 2012 */
    
  • Sage
    def a(n):
        n = ZZ(n)
        return (4*n + 2).binomial(n + 1) // ((2*n + 1) * (3*n + 2))
    # F. Chapoton, Aug 06 2015
    

Formula

a(n) = 2*(4*n+1)! / ((n+1)!*(3*n+2)!) = binomial(4*n+1, n+1) - 9*binomial(4*n+1, n-1).
G.f.: (2-g)*g^2 where g = 1 + x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 10 2011
G.f.: hypergeom([1,1/2,3/4,5/4],[2,4/3,5/3],256*x/27) = 1 + 120*x/(Q(0)-120*x); Q(k) = 8*x*(2*k+1)*(4*k+3)*(4*k+5) + 3*(k+2)*(3*k+4)*(3*k+5) - 24*x*(k+2)*(2*k+3)*(3*k+4)*(3*k+5)*(4*k+7)*(4*k+9)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2011
a(n) = binomial(4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2)). - Michael Somos, Mar 28 2012
a(n) * (n+1) = A069271(n). - Michael Somos, Mar 28 2012
0 = F(a(n), a(n+1), ..., a(n+8)) for all n in Z where a(-1) = 3/4 and F() is a polynomial of degree 2 with integer coefficients and 29 monomials. - Michael Somos, Dec 23 2014
D-finite with recurrence: 3*(3*n+2)*(3*n+1)*(n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 21 2015
a(n) = Sum_{k=1..A000108(n)} k * A263191(n,k). - Alois P. Heinz, Nov 16 2015
a(n) ~ 2^(8*n+7/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n+5/2)). - Vaclav Kotesovec, Feb 26 2016
E.g.f.: 3F3(1/2,3/4,5/4; 4/3,5/3,2; 256*x/27). - Ilya Gutkovskiy, Feb 01 2017
From Gheorghe Coserea, Aug 17 2017: (Start)
G.f. y(x) satisfies:
0 = x^3*y^4 + 3*x^2*y^3 + x*(8*x+3)*y^2 - (20*x-1)*y + 16*x-1.
0 = x*(256*x - 27)*deriv(y,x) - 8*x^2*y^3 - 25*x*y^2 + 4*(24*x-11)*y + 44.
(End)
From Karol A. Penson, Apr 06 2022: (Start)
a(n) = Integral_{x=0...256/27} x^n*W(x), where
W(x) = (sqrt(2)/Pi)*(h1(x) - h2(x) + h3(x)) and
h1(x) = 3F2([-6/12,-2/12, 2/12], [ 3/12, 9/12], (27*x)/256)/((x/2)^(1/2));
h2(x) = 3F2([-3/12, 1/12, 5/12], [ 6/12, 15/12], (27*x)/256)/(x^(1/4));
h3(x) = 3F2([ 3/12, 7/12, 11/12], [18/12, 21/12], (27*x)/256)/(x^(-1/4)*32).
This integral representation is unique as the solution of n-th Hausdorff power moment of the function W. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 256/27. (End)
a(n) = (1/27^n) * Product_{1 <= i <= j <= 3*n} (3*i + j + 3)/(3*i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023

Extensions

Edited by F. Chapoton, Feb 03 2011

A006419 a(n) = 2^(2*n+1) - C(2*n+3,n+1) + C(2*n+1,n).

Original entry on oeis.org

0, 1, 7, 37, 176, 794, 3473, 14893, 63004, 263950, 1097790, 4540386, 18696432, 76717268, 313889477, 1281220733, 5219170052, 21224674118, 86188320962, 349550141078, 1416102710912, 5731427140268, 23177285611082, 93655986978002, 378195990166136, 1526289367335244
Offset: 0

Views

Author

Keywords

Comments

Number of rooted isthmusless planar maps with n+1 faces and 2 vertices. - Dan Drake, Aug 08 2005
a(n) = total area below all Dyck (n+1)-paths and above the lowest possible Dyck path, namely, UDUD...UD (taking upsteps of unit length). For example, the areas below the 5 Dyck 3-paths UUUDDD, UUDUDD, UDUUDD, UUDDUD, UDUDUD are 3,2,1,1,0 respectively, yielding a(2)=3+2+1+1+0=7. - David Callan, Jul 03 2006
Convolution of A000245 and A000302 (powers of 4).- Philippe Deléham, Jun 02 2013

Examples

			G.f. = x + 7*x^2 + 37*x^3 + 176*x^4 + 794*x^5 + 3473*x^6 + 14893*x^7 + 63004*x^8 + ...
		

References

  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A342981.

Programs

  • Maple
    f := n->2^(2*n+1)-binomial(2*n+3,n+1)+binomial(2*n+1,n); seq(f(n), n=0..30);
  • Mathematica
    Table[2^(2 n + 1) - Binomial[2 n + 3, n + 1] +
    Binomial[2 n + 1, n], {n, 0, 30}] (* Wesley Ivan Hurt, Mar 30 2014 *)
  • Maxima
    a(n):=sum(binomial(2*(n+1),n-k-1),k,0,n); /* Vladimir Kruchinin, Oct 23 2016 */

Formula

a(n+1) = Sum_{k=0..n} (n-k)*A000108(n-k)*A001700(k). - Philippe Deléham, Jan 25 2004
G.f.: c(x)^3*x/(1-4x) where c(x) = g.f. for the Catalan numbers A000108. - Philippe Deléham, Jun 02 2013
a(n) = Integral_{x=0..4} x^n*W(x)*dx, n >= 0, is the integral representation as n-th moment of a signed weight function W(x), where W(x) = W_a(x) + W_c(x), with W_a(x) = 2*Dirac(x-4), which is the discrete (atomic) part, and W_c(x) = (1/(2*Pi))*(1-x)*sqrt(x/(4-x)) is the continuous part of W(x): W_c(0) = W_c(1) = 0, W_c(x) > 0 for x < 1, lim_{x->4} W_c(x) = -oo. - Karol A. Penson, Jul 31 2013 [edited by Michel Marcus, Mar 14 2020]
(n+2)*a(n) + (-9*n-10)*a(n-1) + 2*(12*n+1)*a(n-2) + 8*(-2*n+3)*a(n-3) = 0. - R. J. Mathar, Mar 30 2014
a(n) = Sum_{k=0..n} binomial(2*(n+1), n-k-1). - Vladimir Kruchinin, Oct 23 2016
0 = a(n)*(+256*a(n+1) - 992*a(n+2) + 520*a(n+3) - 72*a(n+4)) + a(n+1)*(+224*a(n+1) + 344*a(n+2) - 398*a(n+3) + 70*a(n+4)) + a(n+2)*(+6*a(n+2) + 59*a(n+3) - 17*a(n+4)) + a(n+3)*(-a(n+3) + a(n+4)), for all n >= 0. - Michael Somos, Oct 23 2016
a(n) = [x^n] x/((1 - 2*x)*(1 - x)^(n+3)). - Ilya Gutkovskiy, Oct 25 2017
From Seiichi Manyama, Jul 29 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(2*k+1+l,k) * binomial(2*n-2*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(n+k+2,k). (End)

A343092 Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without isthmuses, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 10, 10, 79, 70, 20, 340, 900, 420, 35, 1071, 5846, 7885, 2310, 56, 2772, 26320, 71372, 59080, 12012, 84, 6258, 93436, 431739, 706068, 398846, 60060, 120, 12768, 280120, 2000280, 5494896, 6052840, 2499096, 291720, 165, 24090, 739420, 7643265, 32055391, 58677420, 46759630, 14805705, 1385670
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n - k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
   1;
   4,   10;
  10,   79,    70;
  20,  340,   900,    420;
  35, 1071,  5846,   7885,   2310;
  56, 2772, 26320,  71372,  59080,  12012;
  84, 6258, 93436, 431739, 706068, 398846, 60060;
  ...
		

Crossrefs

Columns 1..2 are A000292, A006469.
Diagonals are A002802, A006425, A006426, A006427.
Row sums are A343093.

Programs

  • PARI
    \\ Needs F from A342989.
    G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))}
    H(n, g=1)={my(q=G(n, g, 'y, 'z)-x, v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

A342980 Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 01 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, columns k without the initial zero term is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,   0;
  0, 1,   1,    0;
  0, 1,   8,    1,     0;
  0, 1,  20,   20,     1,     0;
  0, 1,  38,  131,    38,     1,    0;
  0, 1,  63,  469,   469,    63,    1,   0;
  0, 1,  96, 1262,  3008,  1262,   96,   1, 0;
  0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
  ...
		

Crossrefs

Columns (and diagonals) are A006416, A006417, A006418.
Row sums are A099553(n+1).

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n,y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) = 1 + x*B(x,y) and B(x,y) is the g.f. of A082680.

A342987 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 15, 5, 0, 4, 60, 84, 14, 0, 5, 175, 650, 420, 42, 0, 6, 420, 3324, 5352, 1980, 132, 0, 7, 882, 13020, 42469, 37681, 9009, 429, 0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430, 0, 9, 2970, 118998, 1142622, 3462354, 3711027, 1421226, 175032, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 4*(k-2)+1.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2,    2;
  0, 3,   15,     5;
  0, 4,   60,    84,     14;
  0, 5,  175,   650,    420,     42;
  0, 6,  420,  3324,   5352,   1980,    132;
  0, 7,  882, 13020,  42469,  37681,   9009,   429;
  0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430;
  ...
		

Crossrefs

Columns k=1..4 are A000007, A000027, A006470, A006471.
Diagonals are A000108, A002740, A006432, A006433.
Row sums are A342988.

Programs

  • PARI
    \\ here G(n,y) is A342984 as g.f.
    F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
    G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))}
    H(n)={my(g=G(n,y)-x, v=Vec(sqrt(serreverse(x/g^2)/x))); [Vecrev(t) | t<-v]}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) + x is the g.f. of A342984.

A027836 Total number of vertices in all loopless rooted planar maps with n edges.

Original entry on oeis.org

1, 2, 8, 43, 268, 1824, 13156, 98865, 765948, 6075256, 49094708, 402801425, 3346590068, 28099903160, 238079915640, 2032914717645, 17476713955548, 151143219598008, 1314045772469632, 11478299163026540, 100688538612524720, 886622619082002120, 7834289222109530340
Offset: 0

Views

Author

Keywords

Comments

The number of rooted isthmusless n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

References

  • L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160.
  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Maple
    12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!);
  • Mathematica
    Join[{1},Table[12n (4n-1)! (5n^2+13n+2)/(n!(3n+3)!),{n,20}]] (* Harvey P. Dale, May 20 2018 *)
  • PARI
    a(n) = if(n==0, 1, 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!)) \\ Andrew Howroyd, Apr 06 2021

Formula

a(n) = 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!) for n > 0.
G.f.: -(1-3*g+g^2)*g where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
a(n) = Sum_{k=1..n+1} k*A342981(n, k). - Andrew Howroyd, Apr 06 2021

Extensions

Offset corrected and terms a(21) and beyond from Andrew Howroyd, Apr 06 2021

A006468 Number of rooted planar maps with 4 faces and n vertices and no isthmuses.

Original entry on oeis.org

5, 37, 150, 449, 1113, 2422, 4788, 8790, 15213, 25091, 39754, 60879, 90545, 131292, 186184, 258876, 353685, 475665, 630686, 825517, 1067913, 1366706, 1731900, 2174770, 2707965, 3345615, 4103442, 4998875, 6051169, 7281528, 8713232, 10371768, 12284965, 14483133, 16999206
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A342981.

Programs

  • Mathematica
    A006468[n_] := n*(n + 1)*(n + 2)*(n*(n*(2*n + 33) + 142) + 123)/360;
    Array[A006468, 50] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    a(n) = {n *(n+1) *(n+2) *(2*n^3 + 33*n^2 + 142*n + 123) /360} \\ Andrew Howroyd, Apr 02 2021

Formula

G.f.: -x*(x^3-4*x^2+2*x+5)/(x-1)^7, equivalent to a(n) = n *(n+1) *(n+2) *(2*n^3 +33*n^2 +142*n +123) /360, conjectured in Simon Plouffe's Master's thesis, 1992.
The above conjecture is true. - Andrew Howroyd, Apr 02 2021

Extensions

Title improved and a(13)-a(14) from Sean A. Irvine, Apr 24 2017
Terms a(15) and beyond from Andrew Howroyd, Apr 02 2021

A006420 Number of rooted planar maps with 3 vertices and n faces and no isthmuses.

Original entry on oeis.org

1, 16, 150, 1104, 7077, 41504, 228810, 1205520, 6135690, 30391520, 147277676, 700990752, 3286733805, 15215673408, 69675615234, 316058238864, 1421891923038, 6350464644960, 28179908990772, 124327908683616, 545691921346146, 2383936774151616, 10370479696102500
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A342981.

Programs

  • PARI
    seq(n)={my(g=x*(1-sqrt(1-4*x + O(x^n)))/(2*x)); Vec((1 + 2*g - 4*g^2)/((1 - g)^4*(1 - 2*g)^5))} \\ Andrew Howroyd, Apr 06 2021

Formula

G.f.: x^2*(1 + 2*g - 4*g^2)/((1 - g)^4*(1 - 2*g)^5) where g/x is the g.f. of A000108.

Extensions

a(14) and a(15) from Sean A. Irvine, Apr 05 2017
Terms a(16) and beyond from Andrew Howroyd, Apr 02 2021

A006421 Number of rooted planar maps with 4 vertices and n faces and no isthmuses.

Original entry on oeis.org

1, 30, 449, 4795, 41850, 319320, 2213665, 14283280, 87169790, 508887860, 2865204762, 15654301865, 83388235348, 434685964540, 2223970137825, 11194499812388, 55546566721430, 272142754971892, 1318317357277470, 6321681903231990, 30037740651227756, 141545610360126400
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A342981.

Programs

  • PARI
    seq(n)={my(g=x*(1-sqrt(1-4*x + O(x^n)))/(2*x)); Vec((1 + 9*g - 9*g^2 - 20*g^3 + 20*g^4)/((1 - g)^5*(1 - 2*g)^8))} \\ Andrew Howroyd, Apr 02 2021

Formula

G.f.: x^2*(1 + 9*g - 9*g^2 - 20*g^3 + 20*g^4)/((1 - g)^5*(1 - 2*g)^8) where g/x is the g.f. of A000108. - Andrew Howroyd, Apr 02 2021

Extensions

a(13) and title improved by Sean A. Irvine, Apr 06 2017
Terms a(14) and beyond from Andrew Howroyd, Apr 02 2021
Showing 1-9 of 9 results.