Colin Defant has authored 40 sequences. Here are the ten most recent ones:
A350681
Triangle read by rows. T(n,k) is the number of hitomezashi loops of width 2(n-k)+1 and height 2k+1 for 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 8, 11, 8, 1, 0, 0, 1, 16, 27, 27, 16, 1, 0, 0, 1, 32, 64, 76, 64, 32, 1, 0
Offset: 0
Triangle T(n,k) begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 2, 1, 0;
0, 1, 4, 4, 1, 0;
0, 1, 8, 11, 8, 1, 0;
0, 1, 16, 27, 27, 16, 1, 0;
0, 1, 32, 64, 76, 64, 32, 1, 0;
...
A350680
Number of hitomezashi loops of width 2n+1 and height 2n+1.
Original entry on oeis.org
1, 1, 2, 11, 76, 600
Offset: 0
A348905
Number of permutations of size n that require exactly n-1 iterations of the pop-stack sorting map to reach the identity.
Original entry on oeis.org
1, 1, 2, 8, 32, 155, 830, 5106, 35346, 272198, 2344944, 22070987, 230156314, 2590636217, 31914293380, 420241717802
Offset: 1
The pop-stack sorting map acts by reversing the descending runs of a permutation. For example, it sends 3412 to 3142, it sends 3142 to 1324, and it sends 1324 to 1234. This shows that if we start with the permutation 3412, then we require 4-1=3 iterations to reach the identity permutation. There are 8 permutations of size 4 that require 3 iterations (all others require fewer than 3 iterations), namely 2341, 3241, 3412, 3421, 4123, 4132, 4231, 4312.
- M. Albert and V. Vatter, How many pop-stacks does it take to sort a permutation? Comput. J., (2021).
- A. Asinowski, C. Banderier, and B. Hackl, Flip-sort and combinatorial aspects of pop-stack sorting. Discrete Math. Theor. Comput. Sci., 22 (2021).
- A. Claesson and B. A. Gudmundsson, Enumerating permutations sortable by k passes through a pop-stack. Adv. Appl. Math., 108 (2019), 79-96.
- L. Pudwell and R. Smith, Two-stack-sorting with pop stacks. Australas. J. Combin., 74 (2019), 179-195.
- A. Claesson and B. A. Guðmundsson, Enumerating permutations sortable by k passes through a pop-stack, arXiv:1710.04978 [math.CO], 2017-2019.
- L. Pudwell and R. Smith, Two-stack-sorting with pop stacks, arXiv:1801.05005 [math.CO], 2018.
- Peter Ungar, 2N noncollinear points determine at least 2N directions, J. Combin. Theory Ser. A, 33:3 (1982), pp. 343-347.
-
from itertools import permutations
def ps(lst): # pop-stack sorting operator [cf. Claesson, Guðmundsson]
out, stack = [], []
for i in range(len(lst)):
if len(stack) == 0 or stack[-1] < lst[i]:
out.extend(stack[::-1])
stack = []
stack.append(lst[i])
return out + stack[::-1]
def psops(t):
c, lst, srtdlst = 0, list(t), sorted(t)
if lst == srtdlst: return 0
while lst != srtdlst:
lst = ps(lst)
c += 1
return c
def a(n):
return sum(1 for p in permutations(range(n), n) if psops(p) == n-1)
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Nov 09 2021
A337522
Number of permutations of length n that are sorted to the identity by a consecutive-312-avoiding-stack followed by a classical-21-avoiding stack.
Original entry on oeis.org
1, 1, 2, 5, 15, 50, 179, 675, 2649, 10734
Offset: 0
Sending the permutation 132 through a consecutive-312-avoiding stack results in 231, and a classical 21-avoiding stack then sends 231 to 213, which is not the identity 123. Applying this procedure to any permutation of length 3 other than 132 results in 123, so a(3)=5.
A337495
Maximum number of preimages that a permutation of length n can have under the consecutive-123-avoiding stack-sorting map.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 7, 11, 16, 26, 42
Offset: 0
The consecutive-123-avoiding stack-sorting map acts on permutations of length 3 by reversing every permutation except 321, which gets sent to 213. The permutation 213 has 2 preimages under this map (namely, 312 and 321), and every other permutation of length 3 has at most one preimage. Hence, a(3)=2.
A309331
Expansion of (x+x^3+x^5)/(1-x-3*x^3-x^5).
Original entry on oeis.org
0, 1, 1, 2, 5, 9, 16, 32, 61, 114, 219, 418, 792, 1510, 2878, 5473, 10421, 19847, 37776, 71917, 136931, 260680, 496278, 944847, 1798804, 3424569, 6519790, 12412480, 23631034, 44989208, 85651217, 163064109, 310444213, 591028898, 1125210433
Offset: 0
A307788
Number of valid hook configurations of permutations of [n] that avoid the patterns 231 and 321.
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 29, 72, 182, 466, 1207, 3158, 8334, 22158, 59299, 159614, 431838, 1173710, 3203244, 8774780, 24118522, 66497316, 183858411, 509670494, 1416231616, 3944027402, 11006186760, 30772507128, 86191006746, 241815195292
Offset: 0
A307787
Number of valid hook configurations of 132-avoiding permutations of [n].
Original entry on oeis.org
1, 1, 1, 2, 5, 14, 43, 140, 477, 1683, 6106, 22664, 85735, 329572, 1284440, 5065828, 20188877, 81201801, 329281059, 1345059602, 5530600618, 22876354484, 95137126194, 397610249052, 1669285639455, 7037395810149, 29782584966376
Offset: 0
-
m = 30; A[_] = 0;
Do[A[x_] = (-x^4 A[x]^5 - 4x^3 A[x]^4 + x^2 (-8x^2 + 9x - 6) A[x]^3 + x (14x^2 + 19x - 4) A[x]^2 - (x + 1)^2 (8x - 1))/(16x^4 + 28x^3 - 11x + 1) + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Sep 28 2019 *)
A307786
Number of valid hook configurations of 312-avoiding permutations of [n].
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 148, 528, 1972, 7647, 30605, 125801, 529131, 2270481, 9914870, 43973755, 197744417, 900327160, 4145285618, 19280282194, 90507546094, 428476211848, 2044274855774, 9823314566417, 47516954475991, 231260870664189
Offset: 0
Appears to be the binomial transform of
A151347.
A307789
Number of valid hook configurations of permutations of [n] that avoid the patterns 231 and 1243.
Original entry on oeis.org
1, 1, 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046, 17303, 49721, 143365, 414584, 1201917, 3492117, 10165779, 29643870, 86574831, 253188111, 741365049, 2173243128, 6377181825, 18730782252, 55062586341, 161995031226, 476941691177, 1405155255055
Offset: 0
Comments