cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307788 Number of valid hook configurations of permutations of [n] that avoid the patterns 231 and 321.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 29, 72, 182, 466, 1207, 3158, 8334, 22158, 59299, 159614, 431838, 1173710, 3203244, 8774780, 24118522, 66497316, 183858411, 509670494, 1416231616, 3944027402, 11006186760, 30772507128, 86191006746, 241815195292
Offset: 0

Views

Author

Colin Defant, Apr 28 2019

Keywords

Comments

Essentially the same as A217333 and A025273. - R. J. Mathar, May 17 2019

Crossrefs

Programs

  • PARI
    my(x='x+O('x^35)); Vec((1 - 2*x + 2*x^2 - sqrt(1 - 4*x + 4*x^2 - 4*x^3 + 4*x^4))/(2*x^2)) \\ Michel Marcus, May 08 2019

Formula

G.f.: (1 - 2*x + 2*x^2 - sqrt(1 - 4*x + 4*x^2 - 4*x^3 + 4*x^4)) / (2*x^2).
D-finite with recurrence: (n+2)*a(n) +2*(-2*n-1)*a(n-1) +4*(n-1)*a(n-2) +2*(-2*n+5)*a(n-3) +4*(n-4)*a(n-4)=0. - R. J. Mathar, May 17 2019

A334498 Number of intervals in Fang's Schroeder-Tamari poset.

Original entry on oeis.org

2, 8, 46, 320, 2500, 21120, 188758, 1760256, 16969756, 168022016, 1700483916, 17527963648, 183499999368, 1946861076480, 20896083575142, 226570927865856, 2478789884919084, 27336509563600896, 303635676268456996, 3394385993908879360, 38168423356190965688, 431472747874361540608
Offset: 1

Views

Author

N. J. A. Sloane, May 07 2020

Keywords

Comments

Fang (2020), Theorem 4.2, gives a generating function.

References

  • Wenjie Fang, A partial order on Motzkin paths, Discrete Math., 343 (2020), #111802. See Section 4.

Crossrefs

Cf. A307787.

Programs

  • Mathematica
    Rest[CoefficientList[Series[(-1 + w^4*x^2 + w*(1 + 2*x) - w^3*(3*x + 2*x^2)) / (w*x*(-1 + w^2*x)) /. w -> Root[-1 + #1 + 2*x*#1^2 - 2*x*#1^3 - x*(1 + x)*#1^4 + x^2*#1^5 &, 1], {x, 0, 30}], x]] (* Vaclav Kotesovec, May 07 2020 *)

Formula

a(n) ~ sqrt(5/9 + 1/sqrt(3)) * (4*sqrt(45 + 26*sqrt(3))/3)^n / (sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, May 07 2020

Extensions

More terms from Vaclav Kotesovec, May 07 2020
Showing 1-2 of 2 results.