cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A089574 Column 4 of an array closely related to A083480. (Both arrays have shape sequence A083479).

Original entry on oeis.org

5, 32, 113, 299, 664, 1309, 2366, 4002, 6423, 9878, 14663, 21125, 29666, 40747, 54892, 72692, 94809, 121980, 155021, 194831, 242396, 298793, 365194, 442870, 533195, 637650, 757827, 895433, 1052294, 1230359, 1431704, 1658536, 1913197
Offset: 1

Views

Author

Alford Arnold, Dec 29 2003; extended May 04 2005

Keywords

Comments

The diagonals are finite and sum to A047970.
Values appear to be a transformation of A006468 (rooted planar maps). Also known as well-labeled trees (cf. A000168).
First differences of the conjectured polynomial formula for A006468. [From R. J. Mathar, Jun 26 2010]

Examples

			The array begins
1
2
4
7 1
11 5
16 14 2
22 30 12
29 55 39 5
37 91 95 32 1
		

Crossrefs

Cf. A000124 (column 1), A000330 (column 2), A086602 (column 3), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Formula

Row sums are powers of 2.
a(n) = A000330(n) + A006011(n+1) + A034263(n-1).
a(n)= +6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). G.f.: x*(5+2*x-4*x^2+x^3)/(x-1)^6. a(n) = n*(n+1)*(4*n^3+51*n^2+159*n+86)/120. [From R. J. Mathar, Jun 26 2010]

Extensions

Extended beyond a(8) by R. J. Mathar, Jun 26 2010

A342981 Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 02 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.
By duality, also the number of loopless rooted planar maps with n edges and k vertices.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   2;
  0, 1,   7,    5;
  0, 1,  16,   37,    14;
  0, 1,  30,  150,   176,    42;
  0, 1,  50,  449,  1104,   794,   132;
  0, 1,  77, 1113,  4795,  7077,  3473,   429;
  0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
  ...
		

Crossrefs

Columns k=3..4 are A005581, A006468.
Diagonals are A000108, A006419, A006420, A006421.
Row sums are A000260.

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n, y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f. A(x,y) satisfies A(x) = G(x*A(x,y)^2, y) where G(x,y) = 1 + x*y + x*B(x,y) and B(x,y) is the g.f. of A082680.
A027836(n+1) = Sum_{k=1..n+1} k*T(n,k).
A002293(n) = Sum_{k=1..n+1} k*T(n,n+2-k).
Showing 1-2 of 2 results.