A342981
Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 7, 5;
0, 1, 16, 37, 14;
0, 1, 30, 150, 176, 42;
0, 1, 50, 449, 1104, 794, 132;
0, 1, 77, 1113, 4795, 7077, 3473, 429;
0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
...
-
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
\\ here G(n, y) gives A082680 as g.f.
G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A343090
Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without separating cycles or isthmuses, n >= 2, k = 1..n-1.
Original entry on oeis.org
1, 4, 4, 10, 47, 10, 20, 240, 240, 20, 35, 831, 2246, 831, 35, 56, 2282, 12656, 12656, 2282, 56, 84, 5362, 52164, 109075, 52164, 5362, 84, 120, 11256, 173776, 648792, 648792, 173776, 11256, 120, 165, 21690, 495820, 2978245, 5360286, 2978245, 495820, 21690, 165
Offset: 2
Triangle begins:
1;
4, 4;
10, 47, 10;
20, 240, 240, 20;
35, 831, 2246, 831, 35;
56, 2282, 12656, 12656, 2282, 56;
84, 5362, 52164, 109075, 52164, 5362, 84;
120, 11256, 173776, 648792, 648792, 173776, 11256, 120;
...
-
\\ Needs F from A342989.
G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))}
H(n, g=1)={my(q=G(n, g, 'y, 'z)-x*(1+'z), v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]}
{ my(T=H(10)); for(n=1, #T, print(T[n])) }
A342989
Triangle read by rows: T(n,k) is the number of nonseparable rooted toroidal maps with n edges and k faces, n >= 2, k = 1..n-1.
Original entry on oeis.org
1, 4, 4, 10, 39, 10, 20, 190, 190, 20, 35, 651, 1568, 651, 35, 56, 1792, 8344, 8344, 1792, 56, 84, 4242, 33580, 64667, 33580, 4242, 84, 120, 8988, 111100, 361884, 361884, 111100, 8988, 120, 165, 17490, 317680, 1607125, 2713561, 1607125, 317680, 17490, 165
Offset: 2
Triangle begins:
1;
4, 4;
10, 39, 10;
20, 190, 190, 20;
35, 651, 1568, 651, 35;
56, 1792, 8344, 8344, 1792, 56;
84, 4242, 33580, 64667, 33580, 4242, 84;
120, 8988, 111100, 361884, 361884, 111100, 8988, 120;
...
-
MQ(n,g,x=1)={ \\ after Quadric in A269921.
my(Q=matrix(n+1,g+1)); Q[1,1]=x;
for(n=1, n, for(g=0, min(n\2,g),
my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g]
+ if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g])
+ sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2);
Q[1+n, 1+g] = t * 6/(n+1); ));
Q
}
F(n,m,y,z)={my(Q=MQ(n,m,z)); sum(n=0, n, x^n*Ser(Q[1+n,]/z, y)) + O(x*x^n)}
H(n,g=1)={my(p=F(n,g,'y,'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(10)); for(n=1, #T, print(T[n])) }
A343093
Number of rooted toroidal maps with n edges and no isthmuses.
Original entry on oeis.org
1, 14, 159, 1680, 17147, 171612, 1696491, 16631840, 162090756, 1572801142, 15210259585, 146710561296, 1412132981778, 13569013500024, 130199055578307, 1247825314752768, 11947157409479180, 114288613130155608, 1092495810452593564, 10436544808441964352
Offset: 2
A006469
Number of rooted toroidal maps with 2 faces, n vertices and no isthmuses.
Original entry on oeis.org
10, 79, 340, 1071, 2772, 6258, 12768, 24090, 42702, 71929, 116116, 180817, 273000, 401268, 576096, 810084, 1118226, 1518195, 2030644, 2679523, 3492412, 4500870, 5740800, 7252830, 9082710, 11281725, 13907124, 17022565, 20698576, 25013032, 30051648, 35908488
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Colin Barker, Table of n, a(n) for n = 1..1000
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
A006469[n_] := n*(n + 1)*(n + 2)*(n + 3)*(n*(8*n + 63) + 79)/360;
Array[A006469, 50] (* Paolo Xausa, Aug 20 2025 *)
-
Vec(x*(10 + 9*x - 3*x^2) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Apr 22 2017
A006425
Number of rooted toroidal maps with 2 vertices and n faces and no isthmuses.
Original entry on oeis.org
4, 79, 900, 7885, 59080, 398846, 2499096, 14805705, 83969600, 459868530, 2447439384, 12718070274, 64766697520, 324156347260, 1598200903280, 7776728909121, 37404399901296, 178060831286890, 839857764202520, 3928581810398630, 18239060530882224, 84101317494787684
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Name clarified and terms a(11) and beyond from
Andrew Howroyd, Apr 05 2021
A006426
Number of rooted toroidal maps with 3 vertices and n faces and no isthmuses.
Original entry on oeis.org
10, 340, 5846, 71372, 706068, 6052840, 46759630, 333746556, 2238411692, 14277544216, 87376309020, 516495616120, 2964332933800, 16586670357200, 90782049175614, 487329793111260, 2571575908919740, 13364166071956280, 68507393061864020, 346874109053120616
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Name clarified and terms a(10) and beyond from
Andrew Howroyd, Apr 05 2021
A006427
Number of rooted toroidal maps with 4 vertices and n faces and no isthmuses.
Original entry on oeis.org
20, 1071, 26320, 431739, 5494896, 58677420, 550712668, 4681144391, 36786186216, 271221867098, 1896796135920, 12688048319278, 81709791432384, 509222462694582, 3083998029716868, 18213177504318335, 105186858991413976, 595499805083872458, 3311524095424508480
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Name clarified and terms a(9) and beyond from
Andrew Howroyd, Apr 05 2021
Showing 1-8 of 8 results.
Comments