cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A342981 Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 02 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.
By duality, also the number of loopless rooted planar maps with n edges and k vertices.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   2;
  0, 1,   7,    5;
  0, 1,  16,   37,    14;
  0, 1,  30,  150,   176,    42;
  0, 1,  50,  449,  1104,   794,   132;
  0, 1,  77, 1113,  4795,  7077,  3473,   429;
  0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
  ...
		

Crossrefs

Columns k=3..4 are A005581, A006468.
Diagonals are A000108, A006419, A006420, A006421.
Row sums are A000260.

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n, y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f. A(x,y) satisfies A(x) = G(x*A(x,y)^2, y) where G(x,y) = 1 + x*y + x*B(x,y) and B(x,y) is the g.f. of A082680.
A027836(n+1) = Sum_{k=1..n+1} k*T(n,k).
A002293(n) = Sum_{k=1..n+1} k*T(n,n+2-k).

A343090 Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without separating cycles or isthmuses, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 4, 10, 47, 10, 20, 240, 240, 20, 35, 831, 2246, 831, 35, 56, 2282, 12656, 12656, 2282, 56, 84, 5362, 52164, 109075, 52164, 5362, 84, 120, 11256, 173776, 648792, 648792, 173776, 11256, 120, 165, 21690, 495820, 2978245, 5360286, 2978245, 495820, 21690, 165
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n-k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
    1;
    4,     4;
   10,    47,     10;
   20,   240,    240,     20;
   35,   831,   2246,    831,     35;
   56,  2282,  12656,  12656,   2282,     56;
   84,  5362,  52164, 109075,  52164,   5362,    84;
  120, 11256, 173776, 648792, 648792, 173776, 11256, 120;
  ...
		

Crossrefs

Columns 1..4 are A000292, A006422, A006423, A006424.
Row sums are A343091.

Programs

  • PARI
    \\ Needs F from A342989.
    G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))}
    H(n, g=1)={my(q=G(n, g, 'y, 'z)-x*(1+'z), v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

Formula

T(n,n-k) = T(n,k).

A342989 Triangle read by rows: T(n,k) is the number of nonseparable rooted toroidal maps with n edges and k faces, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 4, 10, 39, 10, 20, 190, 190, 20, 35, 651, 1568, 651, 35, 56, 1792, 8344, 8344, 1792, 56, 84, 4242, 33580, 64667, 33580, 4242, 84, 120, 8988, 111100, 361884, 361884, 111100, 8988, 120, 165, 17490, 317680, 1607125, 2713561, 1607125, 317680, 17490, 165
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n - k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
    1;
    4,    4;
   10,   39,     10;
   20,  190,    190,     20;
   35,  651,   1568,    651,     35;
   56, 1792,   8344,   8344,   1792,     56;
   84, 4242,  33580,  64667,  33580,   4242,   84;
  120, 8988, 111100, 361884, 361884, 111100, 8988, 120;
  ...
		

Crossrefs

Columns 1..4 are A000292, A006408, A006409, A006410.
Row sums are A343089.
Cf. A082680 (planar case), A269921 (rooted toroidal maps), A343090, A343092.

Programs

  • PARI
    MQ(n,g,x=1)={ \\ after Quadric in A269921.
      my(Q=matrix(n+1,g+1)); Q[1,1]=x;
      for(n=1, n, for(g=0, min(n\2,g),
         my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g]
           + if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g])
           + sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2);
         Q[1+n, 1+g] = t * 6/(n+1); ));
      Q
    }
    F(n,m,y,z)={my(Q=MQ(n,m,z)); sum(n=0, n, x^n*Ser(Q[1+n,]/z, y)) + O(x*x^n)}
    H(n,g=1)={my(p=F(n,g,'y,'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

Formula

T(n,n-k) = T(n,k).

A343093 Number of rooted toroidal maps with n edges and no isthmuses.

Original entry on oeis.org

1, 14, 159, 1680, 17147, 171612, 1696491, 16631840, 162090756, 1572801142, 15210259585, 146710561296, 1412132981778, 13569013500024, 130199055578307, 1247825314752768, 11947157409479180, 114288613130155608, 1092495810452593564, 10436544808441964352
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Crossrefs

Row sums of A343092.

Formula

Conjectural g.f.: A(x) = ( Sum_{n >= 1} (1/4)*binomial(4*n, n)*x^n )^2. - Peter Bala, Jul 24 2025

A006469 Number of rooted toroidal maps with 2 faces, n vertices and no isthmuses.

Original entry on oeis.org

10, 79, 340, 1071, 2772, 6258, 12768, 24090, 42702, 71929, 116116, 180817, 273000, 401268, 576096, 810084, 1118226, 1518195, 2030644, 2679523, 3492412, 4500870, 5740800, 7252830, 9082710, 11281725, 13907124, 17022565, 20698576, 25013032, 30051648, 35908488
Offset: 1

Views

Author

Keywords

Comments

A map on a torus has genus 1.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A343092.

Programs

  • Mathematica
    A006469[n_] := n*(n + 1)*(n + 2)*(n + 3)*(n*(8*n + 63) + 79)/360;
    Array[A006469, 50] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    Vec(x*(10 + 9*x - 3*x^2) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Apr 22 2017

Formula

G.f.: x/(x-1)^7*(3*x^2-9*x-10). - Simon Plouffe, Master's thesis, Uqam 1992
From Colin Barker, Apr 22 2017: (Start)
a(n) = (n*(474 + 1247*n + 1215*n^2 + 545*n^3 + 111*n^4 + 8*n^5)) / 360.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

Extensions

Name improved by Sean A. Irvine, Apr 21 2017

A006425 Number of rooted toroidal maps with 2 vertices and n faces and no isthmuses.

Original entry on oeis.org

4, 79, 900, 7885, 59080, 398846, 2499096, 14805705, 83969600, 459868530, 2447439384, 12718070274, 64766697520, 324156347260, 1598200903280, 7776728909121, 37404399901296, 178060831286890, 839857764202520, 3928581810398630, 18239060530882224, 84101317494787684
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A343092.

Extensions

Name clarified and terms a(11) and beyond from Andrew Howroyd, Apr 05 2021

A006426 Number of rooted toroidal maps with 3 vertices and n faces and no isthmuses.

Original entry on oeis.org

10, 340, 5846, 71372, 706068, 6052840, 46759630, 333746556, 2238411692, 14277544216, 87376309020, 516495616120, 2964332933800, 16586670357200, 90782049175614, 487329793111260, 2571575908919740, 13364166071956280, 68507393061864020, 346874109053120616
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A343092.

Extensions

Name clarified and terms a(10) and beyond from Andrew Howroyd, Apr 05 2021

A006427 Number of rooted toroidal maps with 4 vertices and n faces and no isthmuses.

Original entry on oeis.org

20, 1071, 26320, 431739, 5494896, 58677420, 550712668, 4681144391, 36786186216, 271221867098, 1896796135920, 12688048319278, 81709791432384, 509222462694582, 3083998029716868, 18213177504318335, 105186858991413976, 595499805083872458, 3311524095424508480
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A343092.

Extensions

Name clarified and terms a(9) and beyond from Andrew Howroyd, Apr 05 2021
Showing 1-8 of 8 results.