cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A343092 Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without isthmuses, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 10, 10, 79, 70, 20, 340, 900, 420, 35, 1071, 5846, 7885, 2310, 56, 2772, 26320, 71372, 59080, 12012, 84, 6258, 93436, 431739, 706068, 398846, 60060, 120, 12768, 280120, 2000280, 5494896, 6052840, 2499096, 291720, 165, 24090, 739420, 7643265, 32055391, 58677420, 46759630, 14805705, 1385670
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n - k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
   1;
   4,   10;
  10,   79,    70;
  20,  340,   900,    420;
  35, 1071,  5846,   7885,   2310;
  56, 2772, 26320,  71372,  59080,  12012;
  84, 6258, 93436, 431739, 706068, 398846, 60060;
  ...
		

Crossrefs

Columns 1..2 are A000292, A006469.
Diagonals are A002802, A006425, A006426, A006427.
Row sums are A343093.

Programs

  • PARI
    \\ Needs F from A342989.
    G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))}
    H(n, g=1)={my(q=G(n, g, 'y, 'z)-x, v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

A342980 Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 01 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, columns k without the initial zero term is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,   0;
  0, 1,   1,    0;
  0, 1,   8,    1,     0;
  0, 1,  20,   20,     1,     0;
  0, 1,  38,  131,    38,     1,    0;
  0, 1,  63,  469,   469,    63,    1,   0;
  0, 1,  96, 1262,  3008,  1262,   96,   1, 0;
  0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
  ...
		

Crossrefs

Columns (and diagonals) are A006416, A006417, A006418.
Row sums are A099553(n+1).

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n,y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) = 1 + x*B(x,y) and B(x,y) is the g.f. of A082680.

A342989 Triangle read by rows: T(n,k) is the number of nonseparable rooted toroidal maps with n edges and k faces, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 4, 10, 39, 10, 20, 190, 190, 20, 35, 651, 1568, 651, 35, 56, 1792, 8344, 8344, 1792, 56, 84, 4242, 33580, 64667, 33580, 4242, 84, 120, 8988, 111100, 361884, 361884, 111100, 8988, 120, 165, 17490, 317680, 1607125, 2713561, 1607125, 317680, 17490, 165
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n - k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
    1;
    4,    4;
   10,   39,     10;
   20,  190,    190,     20;
   35,  651,   1568,    651,     35;
   56, 1792,   8344,   8344,   1792,     56;
   84, 4242,  33580,  64667,  33580,   4242,   84;
  120, 8988, 111100, 361884, 361884, 111100, 8988, 120;
  ...
		

Crossrefs

Columns 1..4 are A000292, A006408, A006409, A006410.
Row sums are A343089.
Cf. A082680 (planar case), A269921 (rooted toroidal maps), A343090, A343092.

Programs

  • PARI
    MQ(n,g,x=1)={ \\ after Quadric in A269921.
      my(Q=matrix(n+1,g+1)); Q[1,1]=x;
      for(n=1, n, for(g=0, min(n\2,g),
         my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g]
           + if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g])
           + sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2);
         Q[1+n, 1+g] = t * 6/(n+1); ));
      Q
    }
    F(n,m,y,z)={my(Q=MQ(n,m,z)); sum(n=0, n, x^n*Ser(Q[1+n,]/z, y)) + O(x*x^n)}
    H(n,g=1)={my(p=F(n,g,'y,'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

Formula

T(n,n-k) = T(n,k).

A006422 Number of rooted toroidal maps with 2 faces and n vertices and without separating cycles or isthmuses.

Original entry on oeis.org

4, 47, 240, 831, 2282, 5362, 11256, 21690, 39072, 66649, 108680, 170625, 259350, 383348, 552976, 780708, 1081404, 1472595, 1974784, 2611763, 3410946, 4403718, 5625800, 7117630, 8924760, 11098269, 13695192, 16778965, 20419886, 24695592, 29691552, 35501576
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A343090.

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{4,47,240,831,2282,5362,11256},40] (* Harvey P. Dale, May 15 2023 *)
  • PARI
    a(n) = {n*(n + 1)*(n + 2)*(8*n^3 + 87*n^2 + 148*n - 3)/360}

Formula

From Colin Barker, Apr 09 2013: (Start)
a(n) = n*(n + 1)*(n + 2)*(8*n^3 + 87*n^2 + 148*n - 3)/360.
G.f.: x*(2*x^3+5*x^2-19*x-4) / (x-1)^7. (End)

Extensions

Name clarified and terms a(11) and beyond from Andrew Howroyd, Apr 04 2021

A343091 Number of rooted toroidal maps with n edges and no separating cycles or isthmuses.

Original entry on oeis.org

1, 8, 67, 520, 3978, 29988, 224295, 1667888, 12352126, 91196512, 671717950, 4938370736, 36251576684, 265787720908, 1946696834735, 14245828801024, 104173927718694, 761302443498960, 5560564162774202, 40595140188994224, 296242813675800300, 2161031983823779912
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Crossrefs

Row sums of A343090.
Cf. A343093.

A006423 Number of rooted toroidal maps with 3 faces and n vertices and without separating cycles or isthmuses.

Original entry on oeis.org

10, 240, 2246, 12656, 52164, 173776, 495820, 1256992, 2902702, 6214208, 12494482, 23827440, 43430088, 76120288, 128926232, 211867328, 338940050, 529346384, 809006814, 1212404336, 1784810764, 2584951600, 3688170980, 5190163680, 7211346870, 9901950240, 13447909290
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A343090.

Programs

  • PARI
    a(n) = {n*(n + 1)*(n + 2)*(n + 3)*(29*n^5 + 762*n^4 + 5111*n^3 + 7902*n^2 + 8*n + 5088)/45360}

Formula

a(n) = n*(n + 1)*(n + 2)*(n + 3)*(29*n^5 + 762*n^4 + 5111*n^3 + 7902*n^2 + 8*n + 5088)/45360. - Andrew Howroyd, Apr 04 2021

Extensions

Name clarified and terms a(10) and beyond from Andrew Howroyd, Apr 04 2021

A006424 Number of rooted toroidal maps with 4 faces and n vertices and without separating cycles or isthmuses.

Original entry on oeis.org

20, 831, 12656, 109075, 648792, 2978245, 11293436, 36973989, 107727724, 285451894, 699013380, 1601397330, 3465135024, 7135903782, 14072047976, 26707904230, 48991682628, 87164772761, 150869282184, 254695011933, 420306632200, 679327313795, 1077197343300, 1678276223715
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A343090.

Programs

  • PARI
    a(n) = {n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(136*n^7 + 6554*n^6 + 98165*n^5 + 516860*n^4 + 763064*n^3 + 306776*n^2 + 2220955*n - 586110)/19958400} \\ Andrew Howroyd, Apr 04 2021

Formula

a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(136*n^7 + 6554*n^6 + 98165*n^5 + 516860*n^4 + 763064*n^3 + 306776*n^2 + 2220955*n - 586110)/19958400. - Andrew Howroyd, Apr 04 2021

Extensions

Name clarified and terms a(9) and beyond from Andrew Howroyd, Apr 04 2021
Showing 1-7 of 7 results.