A343092
Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without isthmuses, n >= 2, k = 1..n-1.
Original entry on oeis.org
1, 4, 10, 10, 79, 70, 20, 340, 900, 420, 35, 1071, 5846, 7885, 2310, 56, 2772, 26320, 71372, 59080, 12012, 84, 6258, 93436, 431739, 706068, 398846, 60060, 120, 12768, 280120, 2000280, 5494896, 6052840, 2499096, 291720, 165, 24090, 739420, 7643265, 32055391, 58677420, 46759630, 14805705, 1385670
Offset: 2
Triangle begins:
1;
4, 10;
10, 79, 70;
20, 340, 900, 420;
35, 1071, 5846, 7885, 2310;
56, 2772, 26320, 71372, 59080, 12012;
84, 6258, 93436, 431739, 706068, 398846, 60060;
...
-
\\ Needs F from A342989.
G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))}
H(n, g=1)={my(q=G(n, g, 'y, 'z)-x, v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]}
{ my(T=H(10)); for(n=1, #T, print(T[n])) }
A342980
Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 8, 1, 0;
0, 1, 20, 20, 1, 0;
0, 1, 38, 131, 38, 1, 0;
0, 1, 63, 469, 469, 63, 1, 0;
0, 1, 96, 1262, 3008, 1262, 96, 1, 0;
0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
...
-
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
\\ here G(n,y) gives A082680 as g.f.
G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A342989
Triangle read by rows: T(n,k) is the number of nonseparable rooted toroidal maps with n edges and k faces, n >= 2, k = 1..n-1.
Original entry on oeis.org
1, 4, 4, 10, 39, 10, 20, 190, 190, 20, 35, 651, 1568, 651, 35, 56, 1792, 8344, 8344, 1792, 56, 84, 4242, 33580, 64667, 33580, 4242, 84, 120, 8988, 111100, 361884, 361884, 111100, 8988, 120, 165, 17490, 317680, 1607125, 2713561, 1607125, 317680, 17490, 165
Offset: 2
Triangle begins:
1;
4, 4;
10, 39, 10;
20, 190, 190, 20;
35, 651, 1568, 651, 35;
56, 1792, 8344, 8344, 1792, 56;
84, 4242, 33580, 64667, 33580, 4242, 84;
120, 8988, 111100, 361884, 361884, 111100, 8988, 120;
...
-
MQ(n,g,x=1)={ \\ after Quadric in A269921.
my(Q=matrix(n+1,g+1)); Q[1,1]=x;
for(n=1, n, for(g=0, min(n\2,g),
my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g]
+ if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g])
+ sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2);
Q[1+n, 1+g] = t * 6/(n+1); ));
Q
}
F(n,m,y,z)={my(Q=MQ(n,m,z)); sum(n=0, n, x^n*Ser(Q[1+n,]/z, y)) + O(x*x^n)}
H(n,g=1)={my(p=F(n,g,'y,'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(10)); for(n=1, #T, print(T[n])) }
A006422
Number of rooted toroidal maps with 2 faces and n vertices and without separating cycles or isthmuses.
Original entry on oeis.org
4, 47, 240, 831, 2282, 5362, 11256, 21690, 39072, 66649, 108680, 170625, 259350, 383348, 552976, 780708, 1081404, 1472595, 1974784, 2611763, 3410946, 4403718, 5625800, 7117630, 8924760, 11098269, 13695192, 16778965, 20419886, 24695592, 29691552, 35501576
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
LinearRecurrence[{7,-21,35,-35,21,-7,1},{4,47,240,831,2282,5362,11256},40] (* Harvey P. Dale, May 15 2023 *)
-
a(n) = {n*(n + 1)*(n + 2)*(8*n^3 + 87*n^2 + 148*n - 3)/360}
Name clarified and terms a(11) and beyond from
Andrew Howroyd, Apr 04 2021
A343091
Number of rooted toroidal maps with n edges and no separating cycles or isthmuses.
Original entry on oeis.org
1, 8, 67, 520, 3978, 29988, 224295, 1667888, 12352126, 91196512, 671717950, 4938370736, 36251576684, 265787720908, 1946696834735, 14245828801024, 104173927718694, 761302443498960, 5560564162774202, 40595140188994224, 296242813675800300, 2161031983823779912
Offset: 2
A006423
Number of rooted toroidal maps with 3 faces and n vertices and without separating cycles or isthmuses.
Original entry on oeis.org
10, 240, 2246, 12656, 52164, 173776, 495820, 1256992, 2902702, 6214208, 12494482, 23827440, 43430088, 76120288, 128926232, 211867328, 338940050, 529346384, 809006814, 1212404336, 1784810764, 2584951600, 3688170980, 5190163680, 7211346870, 9901950240, 13447909290
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Name clarified and terms a(10) and beyond from
Andrew Howroyd, Apr 04 2021
A006424
Number of rooted toroidal maps with 4 faces and n vertices and without separating cycles or isthmuses.
Original entry on oeis.org
20, 831, 12656, 109075, 648792, 2978245, 11293436, 36973989, 107727724, 285451894, 699013380, 1601397330, 3465135024, 7135903782, 14072047976, 26707904230, 48991682628, 87164772761, 150869282184, 254695011933, 420306632200, 679327313795, 1077197343300, 1678276223715
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Name clarified and terms a(9) and beyond from
Andrew Howroyd, Apr 04 2021
Showing 1-7 of 7 results.
Comments