cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A308523 Number of essentially simple rooted toroidal triangulations with n vertices.

Original entry on oeis.org

0, 1, 10, 97, 932, 8916, 85090, 810846, 7719048, 73431340, 698187400, 6635738209, 63047912372, 598885073788, 5687581936284, 54005562798252, 512728901004816, 4867263839614716, 46199494669833400, 438481077306427924, 4161316466910824272
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    n:=20:
    dev_A := series(RootOf(A-x*(1+A)^4, A), x = 0, n+1):
    seq(coeff(series(subs(A=dev_A, A/(1-3*A)^2), x, n+1), x, k), k=0..n);
  • Mathematica
    terms = 21;
    A[] = 0; Do[A[x] = x (1 + A[x])^4 + O[x]^terms, terms];
    CoefficientList[A[x]/(1 - 3 A[x])^2, x] (* Jean-François Alcover, Jun 17 2019 *)
  • PARI
    my(N=30, x='x+O('x^N), g=x*sum(k=0, N, binomial(4*k+2, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-4*g)^2)) \\ Seiichi Manyama, Jul 19 2025

Formula

G.f.: A/(1-3*A)^2 where A=x(1+A)^4 is the g.f. of A002293.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(24*n - 37)*a(n) = 24*(13824*n^4 - 59328*n^3 + 92832*n^2 - 62278*n + 14653)*a(n-1) - 2048*(2*n - 3)*(4*n - 7)*(4*n - 5)*(24*n - 13)*a(n-2).
a(n) ~ 2^(8*n - 3) / 3^(3*n). (End)
From Seiichi Manyama, Jul 19 2025: (Start)
G.f.: g*(1-g)/(1-4*g)^2 where g*(1-g)^3 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/4) * log( Sum_{k>=0} binomial(4*k,k)*x^k ). (End)
From Seiichi Manyama, Jul 28 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(4*k-2+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n-1,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k-1,k). (End)

A343090 Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without separating cycles or isthmuses, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 4, 10, 47, 10, 20, 240, 240, 20, 35, 831, 2246, 831, 35, 56, 2282, 12656, 12656, 2282, 56, 84, 5362, 52164, 109075, 52164, 5362, 84, 120, 11256, 173776, 648792, 648792, 173776, 11256, 120, 165, 21690, 495820, 2978245, 5360286, 2978245, 495820, 21690, 165
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n-k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
    1;
    4,     4;
   10,    47,     10;
   20,   240,    240,     20;
   35,   831,   2246,    831,     35;
   56,  2282,  12656,  12656,   2282,     56;
   84,  5362,  52164, 109075,  52164,   5362,    84;
  120, 11256, 173776, 648792, 648792, 173776, 11256, 120;
  ...
		

Crossrefs

Columns 1..4 are A000292, A006422, A006423, A006424.
Row sums are A343091.

Programs

  • PARI
    \\ Needs F from A342989.
    G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))}
    H(n, g=1)={my(q=G(n, g, 'y, 'z)-x*(1+'z), v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

Formula

T(n,n-k) = T(n,k).

A308524 Number of essentially 3-connected rooted toroidal maps with n edges.

Original entry on oeis.org

0, 0, 1, 2, 11, 40, 166, 658, 2647, 10592, 42446, 169972, 680670, 2725320, 10910992, 43678882, 174843151, 699839680, 2801078662, 11210671612, 44866276906, 179552951440, 718539964132, 2875389341332, 11506176209206, 46042099714240, 184234059839116, 737184620655368
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1);
    seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1],
         ((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2)
          -48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4))
          /((6*(n-1))*(n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 07 2019
  • Mathematica
    CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jun 25 2019 *)

Formula

G.f.: A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A)) where A=x*(1+A)^2.
G.f.: x*(1 + 8*x + (2*x - 1)*sqrt(1 - 4*x))/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)). - Vaclav Kotesovec, Jun 25 2019
a(n) ~ 2^(2*n - 3) / 3. - Vaclav Kotesovec, Jun 25 2019

A308526 Number of essentially 3-connected rooted toroidal maps with n vertices.

Original entry on oeis.org

0, 2, 42, 892, 18888, 399280, 8431776, 177936064, 3753206400, 79139040000, 1668268861952, 35160393493504, 740921108899840, 15611120289755136, 328889518650990592, 6928313584957702144, 145939409585973133312, 3073901537848967495680, 64741608434203590524928
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(A^2+2*A+2)^2, A), x = 0, n+1): seq(coeff(series(subs(A = dev_A, (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2))), x, n+1), x, k), k = 0 .. n);
  • Mathematica
    Block[{nn = 19, A, x}, A[] = 0; Do[A[x] = x*(2 + 2*A[x] + A[x]^2)^2 + O[x]^nn, nn]; CoefficientList[(1 + A[x])*(A[x]^2 + 3*A[x] + 4)* A[x]/((3*A[x]^2 + 2*A[x] - 2)^2*(A[x] + 2)), x]] (* Michael De Vlieger, Sep 03 2019 *)

Formula

G.f.: (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2)) where A=x*(2+2*A+A^2)^2.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(20802264*n^8 - 513044308*n^7 + 5457802931*n^6 - 32703730375*n^5 + 120697828661*n^4 - 280851750277*n^3 + 402186188144*n^2 - 323841737040*n + 112137480000)*a(n) = 6*(96792934392*n^11 - 2657166947316*n^10 + 32322659739783*n^9 - 229681592172541*n^8 + 1057798736706708*n^7 - 3309904792738002*n^6 + 7166955104700747*n^5 - 10716261762345309*n^4 + 10816142222455650*n^3 - 6994792735444832*n^2 + 2594496776694720*n - 413761340160000)*a(n-1) - 32*(136213224672*n^11 - 3864805132664*n^10 + 48853431813424*n^9 - 362854015235883*n^8 + 1757540351761182*n^7 - 5820283983972594*n^6 + 13419220917200106*n^5 - 21479458450012897*n^4 + 23298284090559356*n^3 - 16214747993479962*n^2 + 6458737193497260*n - 1099216619550000)*a(n-2) - 768*(29622423936*n^11 - 845570009984*n^10 + 10735773789272*n^9 - 79940670306164*n^8 + 387373872945691*n^7 - 1280558339496068*n^6 + 2940763323423808*n^5 - 4679130395980206*n^4 + 5037190265229413*n^3 - 3476169558457578*n^2 + 1372907413337880*n - 231844115160000)*a(n-3) - 24576*(2*n - 7)*(582463392*n^10 - 14885297224*n^9 + 166341178864*n^8 - 1068833075597*n^7 + 4366030094616*n^6 - 11823901892456*n^5 + 21447449277486*n^4 - 25646549248003*n^3 + 19256170722842*n^2 - 8132937809520*n + 1445811660000)*a(n-4) - 131072*(n-5)*(2*n - 9)*(2*n - 7)*(20802264*n^8 - 346626196*n^7 + 2448956167*n^6 - 9565916473*n^5 + 22545828451*n^4 - 32733304759*n^3 + 28456182418*n^2 - 13430023272*n + 2589840000)*a(n-5).
a(n) ~ (7 + sqrt(7)) * 2^(4*n - 5) * (17 + 7*sqrt(7))^n / 3^(3*n + 1).
(End)
Showing 1-4 of 4 results.