cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A036829 a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).

Original entry on oeis.org

0, 1, 7, 48, 327, 2221, 15060, 102012, 690519, 4671819, 31596447, 213633696, 1444131108, 9760401756, 65957919496, 445671648228, 3011064814455, 20341769686311, 137412453018933, 928188965638464, 6269358748632207, 42343731580741821
Offset: 0

Views

Author

Keywords

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.

Crossrefs

Programs

  • Haskell
    a036829 n = sum $ map
       (\k -> (a007318 (3*k) k) * (a007318 (3*n-3*k-2) (n-k-1))) [0..n-1]
    -- Reinhard Zumkeller, May 24 2012
  • Mathematica
    Table[Sum[Binomial[3k,k]Binomial[3n-3k-2,n-k-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jan 10 2012 *)

Formula

G.f.: (g-g^2)/(3*g-1)^2 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
Recurrence: 8*(n-1)*(2*n-1)*a(n) = 6*(36*n^2-81*n+49)*a(n-1) - 81*(3*n-5)*(3*n-4)*a(n-2). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 3^(3*n-1)/2^(2*n+1). - Vaclav Kotesovec, Dec 29 2012
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(3*k,k)*x^k ). - Seiichi Manyama, Jul 19 2025
G.f.: (g-1)/(3-2*g)^2 where g=1+x*g^3. - Seiichi Manyama, Jul 26 2025

A386612 a(n) = Sum_{k=0..n-1} binomial(4*k+1,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 13, 142, 1464, 14689, 145154, 1420812, 13818784, 133793940, 1291073809, 12426782294, 119371355672, 1144851458526, 10965655515588, 104919037771224, 1002960800712720, 9580390527192940, 91453374122574372, 872513477065735768, 8320168165323802464, 79305962393873976417
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k+1, k)*binomial(4*n-4*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(4-3*g)^2 where g=1+x*g^4.
G.f.: g/((1-g)^2 * (1-4*g)^2) where g*(1-g)^3 = x.
a(n) = Sum_{k=0..n-1} binomial(4*k+1+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n+2,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k+2,k).
D-finite with recurrence 13122*n*(3*n+2)*(3*n+1)*a(n) +81*(-124803*n^3+284553*n^2-210740*n+42140)*a(n-1) +24*(7476768*n^3-29253744*n^2+37920106*n-16562575)*a(n-2) +40960*(-26344*n^3+148032*n^2-282329*n+185874)*a(n-3) +55050240*(2*n-5)*(4*n-13)*(4*n-11)*a(n-4)=0. - R. J. Mathar, Aug 10 2025

A386368 a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k-2,n-k-1).

Original entry on oeis.org

0, 1, 16, 246, 3736, 56421, 849432, 12763878, 191548464, 2871970110, 43031833656, 644432826478, 9646983339456, 144366433138955, 2159869510669320, 32306874783230556, 483151884326658144, 7224464127509984490, 108011596038055519680, 1614676987907480393940
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2025

Keywords

Examples

			(1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ) = x + 8*x^2 + 82*x^3 + 934*x^4 + 56421*x^5/5 + ...
		

Crossrefs

Programs

  • Maple
    A386368 := proc(n::integer)
        add(binomial(6*k,k)*binomial(6*n-6*k-2,n-k-1),k=0..n-1) ;
    end proc:
    seq(A386368(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
  • PARI
    a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k-2, n-k-1));
    
  • PARI
    my(N=20, x='x+O('x^N), g=x*sum(k=0, N, binomial(6*k+4, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-6*g)^2))

Formula

G.f.: g*(1-g)/(1-6*g)^2 where g*(1-g)^5 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ).
G.f.: (g-1)/(6-5*g)^2 where g=1+x*g^6.
a(n) = Sum_{k=0..n-1} binomial(6*k-2+l,k) * binomial(6*n-6*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(6*n-1,k).
a(n) = Sum_{k=0..n-1} 6^(n-k-1) * binomial(5*n+k-1,k).
Conjecture D-finite with recurrence 48828125*(n-1)*(5*n-4)*(5*n-3) *(432862082629612805*n -769306661967834399) *(5*n-2)*(5*n-1)*a(n) +1125000*(-405245406115816219575000*n^6 +2613180799468910510392500*n^5 -7667164406968651479521250*n^4 +13834502135358262506660375*n^3 -16251583347734702117341345*n^2 +11251247074043948959380314*n -3395699069351241765495720)*a(n-1) +33592320*(142281690918326440537500*n^6 -1266424338521609272012500*n^5 +5236041263583271687953750*n^4 -12786608152035075786775875*n^3 +18838556229131595646260055*n^2 -15323925851720394901667853*n +5240681406952416812161236)*a(n-2) -53444359913472*(6*n-17) *(395547729523405*n -538181211711288)*(6*n-13) *(3*n-7)*(2*n-5) *(3*n-8)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386565 a(n) = Sum_{k=0..n-1} binomial(4*k-1,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 11, 111, 1091, 10596, 102237, 982458, 9415539, 90063180, 860278156, 8208539351, 78258171957, 745595635084, 7099714918062, 67574576298276, 642927956583123, 6115089154367484, 58146652079312580, 552769690436583532, 5253812277363417836, 49925987913040522128
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			(1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ) = x + 11*x^2/2 + 37*x^3 + 1091*x^4/4 + 10596*x^5/5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k-1, k)*binomial(4*n-4*k, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(4*k, k)/(3*k+1)*x^k)); concat(0, Vec(g*(g-1)/(4-3*g)^2))

Formula

G.f.: g*(g-1)/(4-3*g)^2 where g=1+x*g^4.
G.f.: g/(1-4*g)^2 where g*(1-g)^3 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ).
a(n) = Sum_{k=0..n-1} binomial(4*k-1+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k,k).

A386367 a(n) = Sum_{k=0..n-1} binomial(5*k,k) * binomial(5*n-5*k-2,n-k-1).

Original entry on oeis.org

0, 1, 13, 163, 2021, 24930, 306655, 3765448, 46182101, 565939603, 6931070490, 84845250370, 1038235255415, 12700966517968, 155336699256808, 1899439862390640, 23222289820948405, 283872591297526505, 3469680960837171415, 42404345427419774621, 518193229118757697930
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2025

Keywords

Examples

			(1/5) * log( Sum_{k>=0} binomial(5*k,k)*x^k ) = x + 13*x^2/2 + 163*x^3/3 + 2021*x^4/4 + 4986*x^5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k, k)*binomial(5*n-5*k-2, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=x*sum(k=0, N, binomial(5*k+3, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-5*g)^2))

Formula

G.f.: g*(1-g)/(1-5*g)^2 where g*(1-g)^4 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/5) * log( Sum_{k>=0} binomial(5*k,k)*x^k ).
G.f.: (g-1)/(5-4*g)^2 where g=1+x*g^5.
a(n) = Sum_{k=0..n-1} binomial(5*k-2+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n-1,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k-1,k).

A386611 a(n) = Sum_{k=0..n-1} binomial(4*k,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 12, 126, 1268, 12513, 122148, 1184364, 11432100, 109997460, 1055891248, 10117633542, 96812495820, 925334377822, 8836315646616, 84317468847768, 804064275489924, 7663595943744876, 73009005101019792, 695263276434909976, 6618709687608909648, 62989317586872238689
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k, k)*binomial(4*n-4*k, n-k-1));

Formula

G.f.: g^2 * (g-1)/(4-3*g)^2 where g=1+x*g^4.
G.f.: g/((1-g) * (1-4*g)^2) where g*(1-g)^3 = x.
a(n) = Sum_{k=0..n-1} binomial(4*k+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k+1,k).

A308524 Number of essentially 3-connected rooted toroidal maps with n edges.

Original entry on oeis.org

0, 0, 1, 2, 11, 40, 166, 658, 2647, 10592, 42446, 169972, 680670, 2725320, 10910992, 43678882, 174843151, 699839680, 2801078662, 11210671612, 44866276906, 179552951440, 718539964132, 2875389341332, 11506176209206, 46042099714240, 184234059839116, 737184620655368
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1);
    seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1],
         ((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2)
          -48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4))
          /((6*(n-1))*(n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 07 2019
  • Mathematica
    CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jun 25 2019 *)

Formula

G.f.: A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A)) where A=x*(1+A)^2.
G.f.: x*(1 + 8*x + (2*x - 1)*sqrt(1 - 4*x))/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)). - Vaclav Kotesovec, Jun 25 2019
a(n) ~ 2^(2*n - 3) / 3. - Vaclav Kotesovec, Jun 25 2019

A308526 Number of essentially 3-connected rooted toroidal maps with n vertices.

Original entry on oeis.org

0, 2, 42, 892, 18888, 399280, 8431776, 177936064, 3753206400, 79139040000, 1668268861952, 35160393493504, 740921108899840, 15611120289755136, 328889518650990592, 6928313584957702144, 145939409585973133312, 3073901537848967495680, 64741608434203590524928
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(A^2+2*A+2)^2, A), x = 0, n+1): seq(coeff(series(subs(A = dev_A, (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2))), x, n+1), x, k), k = 0 .. n);
  • Mathematica
    Block[{nn = 19, A, x}, A[] = 0; Do[A[x] = x*(2 + 2*A[x] + A[x]^2)^2 + O[x]^nn, nn]; CoefficientList[(1 + A[x])*(A[x]^2 + 3*A[x] + 4)* A[x]/((3*A[x]^2 + 2*A[x] - 2)^2*(A[x] + 2)), x]] (* Michael De Vlieger, Sep 03 2019 *)

Formula

G.f.: (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2)) where A=x*(2+2*A+A^2)^2.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(20802264*n^8 - 513044308*n^7 + 5457802931*n^6 - 32703730375*n^5 + 120697828661*n^4 - 280851750277*n^3 + 402186188144*n^2 - 323841737040*n + 112137480000)*a(n) = 6*(96792934392*n^11 - 2657166947316*n^10 + 32322659739783*n^9 - 229681592172541*n^8 + 1057798736706708*n^7 - 3309904792738002*n^6 + 7166955104700747*n^5 - 10716261762345309*n^4 + 10816142222455650*n^3 - 6994792735444832*n^2 + 2594496776694720*n - 413761340160000)*a(n-1) - 32*(136213224672*n^11 - 3864805132664*n^10 + 48853431813424*n^9 - 362854015235883*n^8 + 1757540351761182*n^7 - 5820283983972594*n^6 + 13419220917200106*n^5 - 21479458450012897*n^4 + 23298284090559356*n^3 - 16214747993479962*n^2 + 6458737193497260*n - 1099216619550000)*a(n-2) - 768*(29622423936*n^11 - 845570009984*n^10 + 10735773789272*n^9 - 79940670306164*n^8 + 387373872945691*n^7 - 1280558339496068*n^6 + 2940763323423808*n^5 - 4679130395980206*n^4 + 5037190265229413*n^3 - 3476169558457578*n^2 + 1372907413337880*n - 231844115160000)*a(n-3) - 24576*(2*n - 7)*(582463392*n^10 - 14885297224*n^9 + 166341178864*n^8 - 1068833075597*n^7 + 4366030094616*n^6 - 11823901892456*n^5 + 21447449277486*n^4 - 25646549248003*n^3 + 19256170722842*n^2 - 8132937809520*n + 1445811660000)*a(n-4) - 131072*(n-5)*(2*n - 9)*(2*n - 7)*(20802264*n^8 - 346626196*n^7 + 2448956167*n^6 - 9565916473*n^5 + 22545828451*n^4 - 32733304759*n^3 + 28456182418*n^2 - 13430023272*n + 2589840000)*a(n-5).
a(n) ~ (7 + sqrt(7)) * 2^(4*n - 5) * (17 + 7*sqrt(7))^n / 3^(3*n + 1).
(End)

A385251 a(n) = Sum_{k=0..n-1} binomial(4*k-3,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 9, 84, 790, 7452, 70401, 665692, 6298236, 59612556, 564393460, 5344664400, 50621130078, 479513718116, 4542730477758, 43039907282664, 407809863233592, 3864303038901996, 36619104142640460, 347027703183853552, 3288802989845088504, 31169274939274755312
Offset: 0

Views

Author

Seiichi Manyama, Jul 28 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k-3, k)*binomial(4*n-4*k, n-k-1));

Formula

G.f.: (g-1)/(g * (4-3*g)^2) where g=1+x*g^4.
G.f.: g * (1-g)^2/(1-4*g)^2 where g*(1-g)^3 = x.
a(n) = Sum_{k=0..n-1} binomial(4*k-3+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n-2,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k-2,k).
Showing 1-9 of 9 results.