A036829
a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).
Original entry on oeis.org
0, 1, 7, 48, 327, 2221, 15060, 102012, 690519, 4671819, 31596447, 213633696, 1444131108, 9760401756, 65957919496, 445671648228, 3011064814455, 20341769686311, 137412453018933, 928188965638464, 6269358748632207, 42343731580741821
Offset: 0
- M. Petkovsek et al., A=B, Peters, 1996, p. 97.
-
a036829 n = sum $ map
(\k -> (a007318 (3*k) k) * (a007318 (3*n-3*k-2) (n-k-1))) [0..n-1]
-- Reinhard Zumkeller, May 24 2012
-
Table[Sum[Binomial[3k,k]Binomial[3n-3k-2,n-k-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jan 10 2012 *)
A386612
a(n) = Sum_{k=0..n-1} binomial(4*k+1,k) * binomial(4*n-4*k,n-k-1).
Original entry on oeis.org
0, 1, 13, 142, 1464, 14689, 145154, 1420812, 13818784, 133793940, 1291073809, 12426782294, 119371355672, 1144851458526, 10965655515588, 104919037771224, 1002960800712720, 9580390527192940, 91453374122574372, 872513477065735768, 8320168165323802464, 79305962393873976417
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(4*k+1, k)*binomial(4*n-4*k, n-k-1));
A386368
a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k-2,n-k-1).
Original entry on oeis.org
0, 1, 16, 246, 3736, 56421, 849432, 12763878, 191548464, 2871970110, 43031833656, 644432826478, 9646983339456, 144366433138955, 2159869510669320, 32306874783230556, 483151884326658144, 7224464127509984490, 108011596038055519680, 1614676987907480393940
Offset: 0
(1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ) = x + 8*x^2 + 82*x^3 + 934*x^4 + 56421*x^5/5 + ...
-
A386368 := proc(n::integer)
add(binomial(6*k,k)*binomial(6*n-6*k-2,n-k-1),k=0..n-1) ;
end proc:
seq(A386368(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k-2, n-k-1));
-
my(N=20, x='x+O('x^N), g=x*sum(k=0, N, binomial(6*k+4, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-6*g)^2))
A386565
a(n) = Sum_{k=0..n-1} binomial(4*k-1,k) * binomial(4*n-4*k,n-k-1).
Original entry on oeis.org
0, 1, 11, 111, 1091, 10596, 102237, 982458, 9415539, 90063180, 860278156, 8208539351, 78258171957, 745595635084, 7099714918062, 67574576298276, 642927956583123, 6115089154367484, 58146652079312580, 552769690436583532, 5253812277363417836, 49925987913040522128
Offset: 0
(1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ) = x + 11*x^2/2 + 37*x^3 + 1091*x^4/4 + 10596*x^5/5 + ...
-
a(n) = sum(k=0, n-1, binomial(4*k-1, k)*binomial(4*n-4*k, n-k-1));
-
my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(4*k, k)/(3*k+1)*x^k)); concat(0, Vec(g*(g-1)/(4-3*g)^2))
A386367
a(n) = Sum_{k=0..n-1} binomial(5*k,k) * binomial(5*n-5*k-2,n-k-1).
Original entry on oeis.org
0, 1, 13, 163, 2021, 24930, 306655, 3765448, 46182101, 565939603, 6931070490, 84845250370, 1038235255415, 12700966517968, 155336699256808, 1899439862390640, 23222289820948405, 283872591297526505, 3469680960837171415, 42404345427419774621, 518193229118757697930
Offset: 0
(1/5) * log( Sum_{k>=0} binomial(5*k,k)*x^k ) = x + 13*x^2/2 + 163*x^3/3 + 2021*x^4/4 + 4986*x^5 + ...
-
a(n) = sum(k=0, n-1, binomial(5*k, k)*binomial(5*n-5*k-2, n-k-1));
-
my(N=30, x='x+O('x^N), g=x*sum(k=0, N, binomial(5*k+3, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-5*g)^2))
A386611
a(n) = Sum_{k=0..n-1} binomial(4*k,k) * binomial(4*n-4*k,n-k-1).
Original entry on oeis.org
0, 1, 12, 126, 1268, 12513, 122148, 1184364, 11432100, 109997460, 1055891248, 10117633542, 96812495820, 925334377822, 8836315646616, 84317468847768, 804064275489924, 7663595943744876, 73009005101019792, 695263276434909976, 6618709687608909648, 62989317586872238689
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(4*k, k)*binomial(4*n-4*k, n-k-1));
A308524
Number of essentially 3-connected rooted toroidal maps with n edges.
Original entry on oeis.org
0, 0, 1, 2, 11, 40, 166, 658, 2647, 10592, 42446, 169972, 680670, 2725320, 10910992, 43678882, 174843151, 699839680, 2801078662, 11210671612, 44866276906, 179552951440, 718539964132, 2875389341332, 11506176209206, 46042099714240, 184234059839116, 737184620655368
Offset: 0
-
dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1);
seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n);
# second Maple program:
a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1],
((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2)
-48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4))
/((6*(n-1))*(n-5)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 07 2019
-
CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jun 25 2019 *)
A308526
Number of essentially 3-connected rooted toroidal maps with n vertices.
Original entry on oeis.org
0, 2, 42, 892, 18888, 399280, 8431776, 177936064, 3753206400, 79139040000, 1668268861952, 35160393493504, 740921108899840, 15611120289755136, 328889518650990592, 6928313584957702144, 145939409585973133312, 3073901537848967495680, 64741608434203590524928
Offset: 0
-
dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(A^2+2*A+2)^2, A), x = 0, n+1): seq(coeff(series(subs(A = dev_A, (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2))), x, n+1), x, k), k = 0 .. n);
-
Block[{nn = 19, A, x}, A[] = 0; Do[A[x] = x*(2 + 2*A[x] + A[x]^2)^2 + O[x]^nn, nn]; CoefficientList[(1 + A[x])*(A[x]^2 + 3*A[x] + 4)* A[x]/((3*A[x]^2 + 2*A[x] - 2)^2*(A[x] + 2)), x]] (* Michael De Vlieger, Sep 03 2019 *)
A385251
a(n) = Sum_{k=0..n-1} binomial(4*k-3,k) * binomial(4*n-4*k,n-k-1).
Original entry on oeis.org
0, 1, 9, 84, 790, 7452, 70401, 665692, 6298236, 59612556, 564393460, 5344664400, 50621130078, 479513718116, 4542730477758, 43039907282664, 407809863233592, 3864303038901996, 36619104142640460, 347027703183853552, 3288802989845088504, 31169274939274755312
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(4*k-3, k)*binomial(4*n-4*k, n-k-1));
Showing 1-9 of 9 results.