cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A036829 a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).

Original entry on oeis.org

0, 1, 7, 48, 327, 2221, 15060, 102012, 690519, 4671819, 31596447, 213633696, 1444131108, 9760401756, 65957919496, 445671648228, 3011064814455, 20341769686311, 137412453018933, 928188965638464, 6269358748632207, 42343731580741821
Offset: 0

Views

Author

Keywords

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.

Crossrefs

Programs

  • Haskell
    a036829 n = sum $ map
       (\k -> (a007318 (3*k) k) * (a007318 (3*n-3*k-2) (n-k-1))) [0..n-1]
    -- Reinhard Zumkeller, May 24 2012
  • Mathematica
    Table[Sum[Binomial[3k,k]Binomial[3n-3k-2,n-k-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jan 10 2012 *)

Formula

G.f.: (g-g^2)/(3*g-1)^2 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
Recurrence: 8*(n-1)*(2*n-1)*a(n) = 6*(36*n^2-81*n+49)*a(n-1) - 81*(3*n-5)*(3*n-4)*a(n-2). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 3^(3*n-1)/2^(2*n+1). - Vaclav Kotesovec, Dec 29 2012
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(3*k,k)*x^k ). - Seiichi Manyama, Jul 19 2025
G.f.: (g-1)/(3-2*g)^2 where g=1+x*g^3. - Seiichi Manyama, Jul 26 2025

A386614 a(n) = Sum_{k=0..n-1} binomial(5*k+1,k) * binomial(5*n-5*k,n-k-1).

Original entry on oeis.org

0, 1, 16, 220, 2880, 36850, 465536, 5834852, 72744640, 903525715, 11191199200, 138323478980, 1706860996096, 21034268215120, 258934785258240, 3184696786012500, 39140208951032960, 480734044749851305, 5901368553964031600, 72410017973538837880, 888114187330722044800, 10888921795007470528060
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k+1, k)*binomial(5*n-5*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(5-4*g)^2 where g=1+x*g^5.
G.f.: g/((1-g)^2 * (1-5*g)^2) where g*(1-g)^4 = x.
a(n) = Sum_{k=0..n-1} binomial(5*k+1+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n+2,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k+2,k).
D-finite with recurrence +35651584*n*(4*n+1)*(2*n+1)*(4*n-1)*a(n) +8192*(56348704*n^4-268019168*n^3+418502324*n^2-264019618*n+57303885)*a(n-1) +160*(-65524820000*n^4+314102050000*n^3-463341186250*n^2+159732814775*n+76118151939)*a(n-2) +62500*(660806875*n^4-1813661250*n^3-5080986250*n^2+20705993100*n-17279228304)*a(n-3) +308935546875*(5*n-11)*(5*n-14)*(5*n-13)*(5*n-17)*a(n-4)=0. - R. J. Mathar, Aug 10 2025

A386368 a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k-2,n-k-1).

Original entry on oeis.org

0, 1, 16, 246, 3736, 56421, 849432, 12763878, 191548464, 2871970110, 43031833656, 644432826478, 9646983339456, 144366433138955, 2159869510669320, 32306874783230556, 483151884326658144, 7224464127509984490, 108011596038055519680, 1614676987907480393940
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2025

Keywords

Examples

			(1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ) = x + 8*x^2 + 82*x^3 + 934*x^4 + 56421*x^5/5 + ...
		

Crossrefs

Programs

  • Maple
    A386368 := proc(n::integer)
        add(binomial(6*k,k)*binomial(6*n-6*k-2,n-k-1),k=0..n-1) ;
    end proc:
    seq(A386368(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
  • PARI
    a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k-2, n-k-1));
    
  • PARI
    my(N=20, x='x+O('x^N), g=x*sum(k=0, N, binomial(6*k+4, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-6*g)^2))

Formula

G.f.: g*(1-g)/(1-6*g)^2 where g*(1-g)^5 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ).
G.f.: (g-1)/(6-5*g)^2 where g=1+x*g^6.
a(n) = Sum_{k=0..n-1} binomial(6*k-2+l,k) * binomial(6*n-6*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(6*n-1,k).
a(n) = Sum_{k=0..n-1} 6^(n-k-1) * binomial(5*n+k-1,k).
Conjecture D-finite with recurrence 48828125*(n-1)*(5*n-4)*(5*n-3) *(432862082629612805*n -769306661967834399) *(5*n-2)*(5*n-1)*a(n) +1125000*(-405245406115816219575000*n^6 +2613180799468910510392500*n^5 -7667164406968651479521250*n^4 +13834502135358262506660375*n^3 -16251583347734702117341345*n^2 +11251247074043948959380314*n -3395699069351241765495720)*a(n-1) +33592320*(142281690918326440537500*n^6 -1266424338521609272012500*n^5 +5236041263583271687953750*n^4 -12786608152035075786775875*n^3 +18838556229131595646260055*n^2 -15323925851720394901667853*n +5240681406952416812161236)*a(n-2) -53444359913472*(6*n-17) *(395547729523405*n -538181211711288)*(6*n-13) *(3*n-7)*(2*n-5) *(3*n-8)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386566 a(n) = Sum_{k=0..n-1} binomial(5*k-1,k) * binomial(5*n-5*k,n-k-1).

Original entry on oeis.org

0, 1, 14, 181, 2284, 28506, 353630, 4370584, 53882392, 663116347, 8150224204, 100073884670, 1227826127020, 15055154471696, 184508186225552, 2260299193652496, 27679951219660080, 338872887728053465, 4147618793911034330, 50753529798492061819, 620942367878256638264
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			(1/4) * log( Sum_{k>=0} binomial(5*k-1,k)*x^k ) = x + 7*x^2 + 181*x^3/3 + 571*x^4 + 28506*x^5/5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k-1, k)*binomial(5*n-5*k, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(5*k, k)/(4*k+1)*x^k)); concat(0, Vec(g*(g-1)/(5-4*g)^2))

Formula

G.f.: g*(g-1)/(5-4*g)^2 where g=1+x*g^5.
G.f.: g/(1-5*g)^2 where g*(1-g)^4 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/4) * log( Sum_{k>=0} binomial(5*k-1,k)*x^k ).
a(n) = Sum_{k=0..n-1} binomial(5*k-1+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k,k).
Conjecture D-finite with recurrence 196608*n*(4*n-3)*(2*n-1)*(18270873280*n -32560150837) *(4*n-1)*a(n) +1280*(-1399185802400000*n^5 +1022280893000000*n^4 +17669158913120000*n^3 -48968110172924750*n^2 +49502057719349955*n -17877514345852392)*a(n-1) +125000*(-61298198200000*n^5 +1447969779032500*n^4 -7721498995066250*n^3 +17474948768595875*n^2 -18352567310653770*n +7399184154389181)*a(n-2) +48828125*(5*n-11) *(5*n-14)*(4958243695*n -6717884799) *(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386613 a(n) = Sum_{k=0..n-1} binomial(5*k,k) * binomial(5*n-5*k,n-k-1).

Original entry on oeis.org

0, 1, 15, 200, 2570, 32470, 406411, 5057440, 62692100, 775007135, 9561421830, 117780193480, 1449107627450, 17811990468400, 218768774024360, 2685209277718320, 32940971570389960, 403920568087927025, 4950915045235523125, 60663591616305306320, 743092566613017730980, 9100088494955802407060
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k, k)*binomial(5*n-5*k, n-k-1));

Formula

G.f.: g^2 * (g-1)/(5-4*g)^2 where g=1+x*g^5.
G.f.: g/((1-g) * (1-5*g)^2) where g*(1-g)^4 = x.
a(n) = Sum_{k=0..n-1} binomial(5*k+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k+1,k).
Showing 1-5 of 5 results.