A036829
a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).
Original entry on oeis.org
0, 1, 7, 48, 327, 2221, 15060, 102012, 690519, 4671819, 31596447, 213633696, 1444131108, 9760401756, 65957919496, 445671648228, 3011064814455, 20341769686311, 137412453018933, 928188965638464, 6269358748632207, 42343731580741821
Offset: 0
- M. Petkovsek et al., A=B, Peters, 1996, p. 97.
-
a036829 n = sum $ map
(\k -> (a007318 (3*k) k) * (a007318 (3*n-3*k-2) (n-k-1))) [0..n-1]
-- Reinhard Zumkeller, May 24 2012
-
Table[Sum[Binomial[3k,k]Binomial[3n-3k-2,n-k-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jan 10 2012 *)
A386614
a(n) = Sum_{k=0..n-1} binomial(5*k+1,k) * binomial(5*n-5*k,n-k-1).
Original entry on oeis.org
0, 1, 16, 220, 2880, 36850, 465536, 5834852, 72744640, 903525715, 11191199200, 138323478980, 1706860996096, 21034268215120, 258934785258240, 3184696786012500, 39140208951032960, 480734044749851305, 5901368553964031600, 72410017973538837880, 888114187330722044800, 10888921795007470528060
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(5*k+1, k)*binomial(5*n-5*k, n-k-1));
A386368
a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k-2,n-k-1).
Original entry on oeis.org
0, 1, 16, 246, 3736, 56421, 849432, 12763878, 191548464, 2871970110, 43031833656, 644432826478, 9646983339456, 144366433138955, 2159869510669320, 32306874783230556, 483151884326658144, 7224464127509984490, 108011596038055519680, 1614676987907480393940
Offset: 0
(1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ) = x + 8*x^2 + 82*x^3 + 934*x^4 + 56421*x^5/5 + ...
-
A386368 := proc(n::integer)
add(binomial(6*k,k)*binomial(6*n-6*k-2,n-k-1),k=0..n-1) ;
end proc:
seq(A386368(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k-2, n-k-1));
-
my(N=20, x='x+O('x^N), g=x*sum(k=0, N, binomial(6*k+4, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-6*g)^2))
A386566
a(n) = Sum_{k=0..n-1} binomial(5*k-1,k) * binomial(5*n-5*k,n-k-1).
Original entry on oeis.org
0, 1, 14, 181, 2284, 28506, 353630, 4370584, 53882392, 663116347, 8150224204, 100073884670, 1227826127020, 15055154471696, 184508186225552, 2260299193652496, 27679951219660080, 338872887728053465, 4147618793911034330, 50753529798492061819, 620942367878256638264
Offset: 0
(1/4) * log( Sum_{k>=0} binomial(5*k-1,k)*x^k ) = x + 7*x^2 + 181*x^3/3 + 571*x^4 + 28506*x^5/5 + ...
-
a(n) = sum(k=0, n-1, binomial(5*k-1, k)*binomial(5*n-5*k, n-k-1));
-
my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(5*k, k)/(4*k+1)*x^k)); concat(0, Vec(g*(g-1)/(5-4*g)^2))
A386613
a(n) = Sum_{k=0..n-1} binomial(5*k,k) * binomial(5*n-5*k,n-k-1).
Original entry on oeis.org
0, 1, 15, 200, 2570, 32470, 406411, 5057440, 62692100, 775007135, 9561421830, 117780193480, 1449107627450, 17811990468400, 218768774024360, 2685209277718320, 32940971570389960, 403920568087927025, 4950915045235523125, 60663591616305306320, 743092566613017730980, 9100088494955802407060
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(5*k, k)*binomial(5*n-5*k, n-k-1));
Showing 1-5 of 5 results.