cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A308523 Number of essentially simple rooted toroidal triangulations with n vertices.

Original entry on oeis.org

0, 1, 10, 97, 932, 8916, 85090, 810846, 7719048, 73431340, 698187400, 6635738209, 63047912372, 598885073788, 5687581936284, 54005562798252, 512728901004816, 4867263839614716, 46199494669833400, 438481077306427924, 4161316466910824272
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    n:=20:
    dev_A := series(RootOf(A-x*(1+A)^4, A), x = 0, n+1):
    seq(coeff(series(subs(A=dev_A, A/(1-3*A)^2), x, n+1), x, k), k=0..n);
  • Mathematica
    terms = 21;
    A[] = 0; Do[A[x] = x (1 + A[x])^4 + O[x]^terms, terms];
    CoefficientList[A[x]/(1 - 3 A[x])^2, x] (* Jean-François Alcover, Jun 17 2019 *)
  • PARI
    my(N=30, x='x+O('x^N), g=x*sum(k=0, N, binomial(4*k+2, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-4*g)^2)) \\ Seiichi Manyama, Jul 19 2025

Formula

G.f.: A/(1-3*A)^2 where A=x(1+A)^4 is the g.f. of A002293.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(24*n - 37)*a(n) = 24*(13824*n^4 - 59328*n^3 + 92832*n^2 - 62278*n + 14653)*a(n-1) - 2048*(2*n - 3)*(4*n - 7)*(4*n - 5)*(24*n - 13)*a(n-2).
a(n) ~ 2^(8*n - 3) / 3^(3*n). (End)
From Seiichi Manyama, Jul 19 2025: (Start)
G.f.: g*(1-g)/(1-4*g)^2 where g*(1-g)^3 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/4) * log( Sum_{k>=0} binomial(4*k,k)*x^k ). (End)
From Seiichi Manyama, Jul 28 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(4*k-2+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n-1,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k-1,k). (End)

A308526 Number of essentially 3-connected rooted toroidal maps with n vertices.

Original entry on oeis.org

0, 2, 42, 892, 18888, 399280, 8431776, 177936064, 3753206400, 79139040000, 1668268861952, 35160393493504, 740921108899840, 15611120289755136, 328889518650990592, 6928313584957702144, 145939409585973133312, 3073901537848967495680, 64741608434203590524928
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(A^2+2*A+2)^2, A), x = 0, n+1): seq(coeff(series(subs(A = dev_A, (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2))), x, n+1), x, k), k = 0 .. n);
  • Mathematica
    Block[{nn = 19, A, x}, A[] = 0; Do[A[x] = x*(2 + 2*A[x] + A[x]^2)^2 + O[x]^nn, nn]; CoefficientList[(1 + A[x])*(A[x]^2 + 3*A[x] + 4)* A[x]/((3*A[x]^2 + 2*A[x] - 2)^2*(A[x] + 2)), x]] (* Michael De Vlieger, Sep 03 2019 *)

Formula

G.f.: (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2)) where A=x*(2+2*A+A^2)^2.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(20802264*n^8 - 513044308*n^7 + 5457802931*n^6 - 32703730375*n^5 + 120697828661*n^4 - 280851750277*n^3 + 402186188144*n^2 - 323841737040*n + 112137480000)*a(n) = 6*(96792934392*n^11 - 2657166947316*n^10 + 32322659739783*n^9 - 229681592172541*n^8 + 1057798736706708*n^7 - 3309904792738002*n^6 + 7166955104700747*n^5 - 10716261762345309*n^4 + 10816142222455650*n^3 - 6994792735444832*n^2 + 2594496776694720*n - 413761340160000)*a(n-1) - 32*(136213224672*n^11 - 3864805132664*n^10 + 48853431813424*n^9 - 362854015235883*n^8 + 1757540351761182*n^7 - 5820283983972594*n^6 + 13419220917200106*n^5 - 21479458450012897*n^4 + 23298284090559356*n^3 - 16214747993479962*n^2 + 6458737193497260*n - 1099216619550000)*a(n-2) - 768*(29622423936*n^11 - 845570009984*n^10 + 10735773789272*n^9 - 79940670306164*n^8 + 387373872945691*n^7 - 1280558339496068*n^6 + 2940763323423808*n^5 - 4679130395980206*n^4 + 5037190265229413*n^3 - 3476169558457578*n^2 + 1372907413337880*n - 231844115160000)*a(n-3) - 24576*(2*n - 7)*(582463392*n^10 - 14885297224*n^9 + 166341178864*n^8 - 1068833075597*n^7 + 4366030094616*n^6 - 11823901892456*n^5 + 21447449277486*n^4 - 25646549248003*n^3 + 19256170722842*n^2 - 8132937809520*n + 1445811660000)*a(n-4) - 131072*(n-5)*(2*n - 9)*(2*n - 7)*(20802264*n^8 - 346626196*n^7 + 2448956167*n^6 - 9565916473*n^5 + 22545828451*n^4 - 32733304759*n^3 + 28456182418*n^2 - 13430023272*n + 2589840000)*a(n-5).
a(n) ~ (7 + sqrt(7)) * 2^(4*n - 5) * (17 + 7*sqrt(7))^n / 3^(3*n + 1).
(End)
Showing 1-2 of 2 results.