Nicolas Bonichon has authored 5 sequences.
A356197
Number of Baxter 3-permutations of length n.
Original entry on oeis.org
1, 1, 4, 28, 260, 2872, 35620, 479508
Offset: 0
A308526
Number of essentially 3-connected rooted toroidal maps with n vertices.
Original entry on oeis.org
0, 2, 42, 892, 18888, 399280, 8431776, 177936064, 3753206400, 79139040000, 1668268861952, 35160393493504, 740921108899840, 15611120289755136, 328889518650990592, 6928313584957702144, 145939409585973133312, 3073901537848967495680, 64741608434203590524928
Offset: 0
-
dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(A^2+2*A+2)^2, A), x = 0, n+1): seq(coeff(series(subs(A = dev_A, (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2))), x, n+1), x, k), k = 0 .. n);
-
Block[{nn = 19, A, x}, A[] = 0; Do[A[x] = x*(2 + 2*A[x] + A[x]^2)^2 + O[x]^nn, nn]; CoefficientList[(1 + A[x])*(A[x]^2 + 3*A[x] + 4)* A[x]/((3*A[x]^2 + 2*A[x] - 2)^2*(A[x] + 2)), x]] (* Michael De Vlieger, Sep 03 2019 *)
A308524
Number of essentially 3-connected rooted toroidal maps with n edges.
Original entry on oeis.org
0, 0, 1, 2, 11, 40, 166, 658, 2647, 10592, 42446, 169972, 680670, 2725320, 10910992, 43678882, 174843151, 699839680, 2801078662, 11210671612, 44866276906, 179552951440, 718539964132, 2875389341332, 11506176209206, 46042099714240, 184234059839116, 737184620655368
Offset: 0
-
dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1);
seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n);
# second Maple program:
a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1],
((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2)
-48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4))
/((6*(n-1))*(n-5)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 07 2019
-
CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jun 25 2019 *)
A308523
Number of essentially simple rooted toroidal triangulations with n vertices.
Original entry on oeis.org
0, 1, 10, 97, 932, 8916, 85090, 810846, 7719048, 73431340, 698187400, 6635738209, 63047912372, 598885073788, 5687581936284, 54005562798252, 512728901004816, 4867263839614716, 46199494669833400, 438481077306427924, 4161316466910824272
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..499
- Nicolas Bonichon, Éric Fusy, Benjamin Lévêque, A bijection for essentially 3-connected toroidal maps, arXiv:1907.04016 [math.CO], 2019.
- Éric Fusy, Benjamin Lévêque, Orientations and bijections for toroidal maps with prescribed face-degrees and essential girth, arXiv:1807.00522 [math.CO], 2018. See Proposition 25 p. 37.
-
n:=20:
dev_A := series(RootOf(A-x*(1+A)^4, A), x = 0, n+1):
seq(coeff(series(subs(A=dev_A, A/(1-3*A)^2), x, n+1), x, k), k=0..n);
-
terms = 21;
A[] = 0; Do[A[x] = x (1 + A[x])^4 + O[x]^terms, terms];
CoefficientList[A[x]/(1 - 3 A[x])^2, x] (* Jean-François Alcover, Jun 17 2019 *)
-
my(N=30, x='x+O('x^N), g=x*sum(k=0, N, binomial(4*k+2, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-4*g)^2)) \\ Seiichi Manyama, Jul 19 2025
A289208
Number of rooted essentially 4-connected toroidal triangulations with n vertices.
Original entry on oeis.org
0, 1, 6, 40, 268, 1801, 12120, 81628, 550040, 3707635, 24997966, 168573824, 1136933488, 7668785996, 51731557296, 348991600660, 2354505179952, 15885669341751, 107183855819490, 723217053276952, 4880016412621148, 32929530655094281
Offset: 0
-
n := 30; t := series(RootOf(729*T^3*x^3+2700*T^3*x^2-848*T^3*x +756*T^2*x^2 +64*T^3 -112*T^2*x +54*T*x^2-T*x+x^2, T), x = 0, n+1): seq(coeff(t, x, k), k = 0 .. n);
-
terms = 22; T[] = 0; Do[T[x] = (1/(x (-1 + 54 x)))(-x^2 + 112 x T[x]^2 - 756 x^2 T[x]^2 - 64 T[x]^3 + 848 x T[x]^3 - 2700 x^2 T[x]^3 - 729 x^3 T[x]^3) + O[x]^terms // Normal, {terms}];
CoefficientList[T[x], x] (* Jean-François Alcover, Nov 16 2018 *)