cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308523 Number of essentially simple rooted toroidal triangulations with n vertices.

Original entry on oeis.org

0, 1, 10, 97, 932, 8916, 85090, 810846, 7719048, 73431340, 698187400, 6635738209, 63047912372, 598885073788, 5687581936284, 54005562798252, 512728901004816, 4867263839614716, 46199494669833400, 438481077306427924, 4161316466910824272
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    n:=20:
    dev_A := series(RootOf(A-x*(1+A)^4, A), x = 0, n+1):
    seq(coeff(series(subs(A=dev_A, A/(1-3*A)^2), x, n+1), x, k), k=0..n);
  • Mathematica
    terms = 21;
    A[] = 0; Do[A[x] = x (1 + A[x])^4 + O[x]^terms, terms];
    CoefficientList[A[x]/(1 - 3 A[x])^2, x] (* Jean-François Alcover, Jun 17 2019 *)
  • PARI
    my(N=30, x='x+O('x^N), g=x*sum(k=0, N, binomial(4*k+2, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-4*g)^2)) \\ Seiichi Manyama, Jul 19 2025

Formula

G.f.: A/(1-3*A)^2 where A=x(1+A)^4 is the g.f. of A002293.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(24*n - 37)*a(n) = 24*(13824*n^4 - 59328*n^3 + 92832*n^2 - 62278*n + 14653)*a(n-1) - 2048*(2*n - 3)*(4*n - 7)*(4*n - 5)*(24*n - 13)*a(n-2).
a(n) ~ 2^(8*n - 3) / 3^(3*n). (End)
From Seiichi Manyama, Jul 19 2025: (Start)
G.f.: g*(1-g)/(1-4*g)^2 where g*(1-g)^3 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/4) * log( Sum_{k>=0} binomial(4*k,k)*x^k ). (End)
From Seiichi Manyama, Jul 28 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(4*k-2+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n-1,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k-1,k). (End)

A308524 Number of essentially 3-connected rooted toroidal maps with n edges.

Original entry on oeis.org

0, 0, 1, 2, 11, 40, 166, 658, 2647, 10592, 42446, 169972, 680670, 2725320, 10910992, 43678882, 174843151, 699839680, 2801078662, 11210671612, 44866276906, 179552951440, 718539964132, 2875389341332, 11506176209206, 46042099714240, 184234059839116, 737184620655368
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1);
    seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1],
         ((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2)
          -48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4))
          /((6*(n-1))*(n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 07 2019
  • Mathematica
    CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jun 25 2019 *)

Formula

G.f.: A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A)) where A=x*(1+A)^2.
G.f.: x*(1 + 8*x + (2*x - 1)*sqrt(1 - 4*x))/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)). - Vaclav Kotesovec, Jun 25 2019
a(n) ~ 2^(2*n - 3) / 3. - Vaclav Kotesovec, Jun 25 2019

A308526 Number of essentially 3-connected rooted toroidal maps with n vertices.

Original entry on oeis.org

0, 2, 42, 892, 18888, 399280, 8431776, 177936064, 3753206400, 79139040000, 1668268861952, 35160393493504, 740921108899840, 15611120289755136, 328889518650990592, 6928313584957702144, 145939409585973133312, 3073901537848967495680, 64741608434203590524928
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(A^2+2*A+2)^2, A), x = 0, n+1): seq(coeff(series(subs(A = dev_A, (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2))), x, n+1), x, k), k = 0 .. n);
  • Mathematica
    Block[{nn = 19, A, x}, A[] = 0; Do[A[x] = x*(2 + 2*A[x] + A[x]^2)^2 + O[x]^nn, nn]; CoefficientList[(1 + A[x])*(A[x]^2 + 3*A[x] + 4)* A[x]/((3*A[x]^2 + 2*A[x] - 2)^2*(A[x] + 2)), x]] (* Michael De Vlieger, Sep 03 2019 *)

Formula

G.f.: (1+A)*(A^2+3*A+4)*A/((3*A^2+2*A-2)^2*(A+2)) where A=x*(2+2*A+A^2)^2.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(20802264*n^8 - 513044308*n^7 + 5457802931*n^6 - 32703730375*n^5 + 120697828661*n^4 - 280851750277*n^3 + 402186188144*n^2 - 323841737040*n + 112137480000)*a(n) = 6*(96792934392*n^11 - 2657166947316*n^10 + 32322659739783*n^9 - 229681592172541*n^8 + 1057798736706708*n^7 - 3309904792738002*n^6 + 7166955104700747*n^5 - 10716261762345309*n^4 + 10816142222455650*n^3 - 6994792735444832*n^2 + 2594496776694720*n - 413761340160000)*a(n-1) - 32*(136213224672*n^11 - 3864805132664*n^10 + 48853431813424*n^9 - 362854015235883*n^8 + 1757540351761182*n^7 - 5820283983972594*n^6 + 13419220917200106*n^5 - 21479458450012897*n^4 + 23298284090559356*n^3 - 16214747993479962*n^2 + 6458737193497260*n - 1099216619550000)*a(n-2) - 768*(29622423936*n^11 - 845570009984*n^10 + 10735773789272*n^9 - 79940670306164*n^8 + 387373872945691*n^7 - 1280558339496068*n^6 + 2940763323423808*n^5 - 4679130395980206*n^4 + 5037190265229413*n^3 - 3476169558457578*n^2 + 1372907413337880*n - 231844115160000)*a(n-3) - 24576*(2*n - 7)*(582463392*n^10 - 14885297224*n^9 + 166341178864*n^8 - 1068833075597*n^7 + 4366030094616*n^6 - 11823901892456*n^5 + 21447449277486*n^4 - 25646549248003*n^3 + 19256170722842*n^2 - 8132937809520*n + 1445811660000)*a(n-4) - 131072*(n-5)*(2*n - 9)*(2*n - 7)*(20802264*n^8 - 346626196*n^7 + 2448956167*n^6 - 9565916473*n^5 + 22545828451*n^4 - 32733304759*n^3 + 28456182418*n^2 - 13430023272*n + 2589840000)*a(n-5).
a(n) ~ (7 + sqrt(7)) * 2^(4*n - 5) * (17 + 7*sqrt(7))^n / 3^(3*n + 1).
(End)
Showing 1-3 of 3 results.