cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006419 a(n) = 2^(2*n+1) - C(2*n+3,n+1) + C(2*n+1,n).

Original entry on oeis.org

0, 1, 7, 37, 176, 794, 3473, 14893, 63004, 263950, 1097790, 4540386, 18696432, 76717268, 313889477, 1281220733, 5219170052, 21224674118, 86188320962, 349550141078, 1416102710912, 5731427140268, 23177285611082, 93655986978002, 378195990166136, 1526289367335244
Offset: 0

Views

Author

Keywords

Comments

Number of rooted isthmusless planar maps with n+1 faces and 2 vertices. - Dan Drake, Aug 08 2005
a(n) = total area below all Dyck (n+1)-paths and above the lowest possible Dyck path, namely, UDUD...UD (taking upsteps of unit length). For example, the areas below the 5 Dyck 3-paths UUUDDD, UUDUDD, UDUUDD, UUDDUD, UDUDUD are 3,2,1,1,0 respectively, yielding a(2)=3+2+1+1+0=7. - David Callan, Jul 03 2006
Convolution of A000245 and A000302 (powers of 4).- Philippe Deléham, Jun 02 2013

Examples

			G.f. = x + 7*x^2 + 37*x^3 + 176*x^4 + 794*x^5 + 3473*x^6 + 14893*x^7 + 63004*x^8 + ...
		

References

  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A342981.

Programs

  • Maple
    f := n->2^(2*n+1)-binomial(2*n+3,n+1)+binomial(2*n+1,n); seq(f(n), n=0..30);
  • Mathematica
    Table[2^(2 n + 1) - Binomial[2 n + 3, n + 1] +
    Binomial[2 n + 1, n], {n, 0, 30}] (* Wesley Ivan Hurt, Mar 30 2014 *)
  • Maxima
    a(n):=sum(binomial(2*(n+1),n-k-1),k,0,n); /* Vladimir Kruchinin, Oct 23 2016 */

Formula

a(n+1) = Sum_{k=0..n} (n-k)*A000108(n-k)*A001700(k). - Philippe Deléham, Jan 25 2004
G.f.: c(x)^3*x/(1-4x) where c(x) = g.f. for the Catalan numbers A000108. - Philippe Deléham, Jun 02 2013
a(n) = Integral_{x=0..4} x^n*W(x)*dx, n >= 0, is the integral representation as n-th moment of a signed weight function W(x), where W(x) = W_a(x) + W_c(x), with W_a(x) = 2*Dirac(x-4), which is the discrete (atomic) part, and W_c(x) = (1/(2*Pi))*(1-x)*sqrt(x/(4-x)) is the continuous part of W(x): W_c(0) = W_c(1) = 0, W_c(x) > 0 for x < 1, lim_{x->4} W_c(x) = -oo. - Karol A. Penson, Jul 31 2013 [edited by Michel Marcus, Mar 14 2020]
(n+2)*a(n) + (-9*n-10)*a(n-1) + 2*(12*n+1)*a(n-2) + 8*(-2*n+3)*a(n-3) = 0. - R. J. Mathar, Mar 30 2014
a(n) = Sum_{k=0..n} binomial(2*(n+1), n-k-1). - Vladimir Kruchinin, Oct 23 2016
0 = a(n)*(+256*a(n+1) - 992*a(n+2) + 520*a(n+3) - 72*a(n+4)) + a(n+1)*(+224*a(n+1) + 344*a(n+2) - 398*a(n+3) + 70*a(n+4)) + a(n+2)*(+6*a(n+2) + 59*a(n+3) - 17*a(n+4)) + a(n+3)*(-a(n+3) + a(n+4)), for all n >= 0. - Michael Somos, Oct 23 2016
a(n) = [x^n] x/((1 - 2*x)*(1 - x)^(n+3)). - Ilya Gutkovskiy, Oct 25 2017
From Seiichi Manyama, Jul 29 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(2*k+1+l,k) * binomial(2*n-2*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(n+k+2,k). (End)

A308523 Number of essentially simple rooted toroidal triangulations with n vertices.

Original entry on oeis.org

0, 1, 10, 97, 932, 8916, 85090, 810846, 7719048, 73431340, 698187400, 6635738209, 63047912372, 598885073788, 5687581936284, 54005562798252, 512728901004816, 4867263839614716, 46199494669833400, 438481077306427924, 4161316466910824272
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    n:=20:
    dev_A := series(RootOf(A-x*(1+A)^4, A), x = 0, n+1):
    seq(coeff(series(subs(A=dev_A, A/(1-3*A)^2), x, n+1), x, k), k=0..n);
  • Mathematica
    terms = 21;
    A[] = 0; Do[A[x] = x (1 + A[x])^4 + O[x]^terms, terms];
    CoefficientList[A[x]/(1 - 3 A[x])^2, x] (* Jean-François Alcover, Jun 17 2019 *)
  • PARI
    my(N=30, x='x+O('x^N), g=x*sum(k=0, N, binomial(4*k+2, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-4*g)^2)) \\ Seiichi Manyama, Jul 19 2025

Formula

G.f.: A/(1-3*A)^2 where A=x(1+A)^4 is the g.f. of A002293.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(24*n - 37)*a(n) = 24*(13824*n^4 - 59328*n^3 + 92832*n^2 - 62278*n + 14653)*a(n-1) - 2048*(2*n - 3)*(4*n - 7)*(4*n - 5)*(24*n - 13)*a(n-2).
a(n) ~ 2^(8*n - 3) / 3^(3*n). (End)
From Seiichi Manyama, Jul 19 2025: (Start)
G.f.: g*(1-g)/(1-4*g)^2 where g*(1-g)^3 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/4) * log( Sum_{k>=0} binomial(4*k,k)*x^k ). (End)
From Seiichi Manyama, Jul 28 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(4*k-2+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n-1,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k-1,k). (End)

A386614 a(n) = Sum_{k=0..n-1} binomial(5*k+1,k) * binomial(5*n-5*k,n-k-1).

Original entry on oeis.org

0, 1, 16, 220, 2880, 36850, 465536, 5834852, 72744640, 903525715, 11191199200, 138323478980, 1706860996096, 21034268215120, 258934785258240, 3184696786012500, 39140208951032960, 480734044749851305, 5901368553964031600, 72410017973538837880, 888114187330722044800, 10888921795007470528060
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k+1, k)*binomial(5*n-5*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(5-4*g)^2 where g=1+x*g^5.
G.f.: g/((1-g)^2 * (1-5*g)^2) where g*(1-g)^4 = x.
a(n) = Sum_{k=0..n-1} binomial(5*k+1+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n+2,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k+2,k).
D-finite with recurrence +35651584*n*(4*n+1)*(2*n+1)*(4*n-1)*a(n) +8192*(56348704*n^4-268019168*n^3+418502324*n^2-264019618*n+57303885)*a(n-1) +160*(-65524820000*n^4+314102050000*n^3-463341186250*n^2+159732814775*n+76118151939)*a(n-2) +62500*(660806875*n^4-1813661250*n^3-5080986250*n^2+20705993100*n-17279228304)*a(n-3) +308935546875*(5*n-11)*(5*n-14)*(5*n-13)*(5*n-17)*a(n-4)=0. - R. J. Mathar, Aug 10 2025

A386616 a(n) = Sum_{k=0..n-1} binomial(6*k+1,k) * binomial(6*n-6*k,n-k-1).

Original entry on oeis.org

0, 1, 19, 315, 5000, 77785, 1196667, 18282742, 278031900, 4214278350, 63723788295, 961789682008, 14495501585664, 218216042892175, 3281961694927950, 49322417450239980, 740753733463215604, 11118981305235476010, 166821561372208253850, 2501861335268901337425, 37507747177968865536840
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(6*k+1, k)*binomial(6*n-6*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(6-5*g)^2 where g=1+x*g^6.
G.f.: g/((1-g)^2 * (1-6*g)^2) where g*(1-g)^5 = x.
a(n) = Sum_{k=0..n-1} binomial(6*k+1+l,k) * binomial(6*n-6*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(6*n+2,k).
a(n) = Sum_{k=0..n-1} 6^(n-k-1) * binomial(5*n+k+2,k).

A386617 a(n) = Sum_{k=0..n-1} binomial(3*k+1,k) * binomial(3*n-3*k,n-k-1).

Original entry on oeis.org

0, 1, 10, 81, 610, 4436, 31626, 222681, 1554772, 10790721, 74560728, 513452604, 3526463304, 24168921568, 165357919850, 1129724254953, 7709039995368, 52551835079699, 357930487932282, 2436038623348521, 16568626556643738, 112626521811112464, 765201654587796312, 5196570956399432796
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(3*k+1, k)*binomial(3*n-3*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(3-2*g)^2 where g=1+x*g^3.
G.f.: g/((1-g)^2 * (1-3*g)^2) where g*(1-g)^2 = x.
a(n) = Sum_{k=0..n-1} binomial(3*k+1+l,k) * binomial(3*n-3*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(3*n+2,k).
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(2*n+k+2,k).

A386611 a(n) = Sum_{k=0..n-1} binomial(4*k,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 12, 126, 1268, 12513, 122148, 1184364, 11432100, 109997460, 1055891248, 10117633542, 96812495820, 925334377822, 8836315646616, 84317468847768, 804064275489924, 7663595943744876, 73009005101019792, 695263276434909976, 6618709687608909648, 62989317586872238689
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k, k)*binomial(4*n-4*k, n-k-1));

Formula

G.f.: g^2 * (g-1)/(4-3*g)^2 where g=1+x*g^4.
G.f.: g/((1-g) * (1-4*g)^2) where g*(1-g)^3 = x.
a(n) = Sum_{k=0..n-1} binomial(4*k+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k+1,k).

A385251 a(n) = Sum_{k=0..n-1} binomial(4*k-3,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 9, 84, 790, 7452, 70401, 665692, 6298236, 59612556, 564393460, 5344664400, 50621130078, 479513718116, 4542730477758, 43039907282664, 407809863233592, 3864303038901996, 36619104142640460, 347027703183853552, 3288802989845088504, 31169274939274755312
Offset: 0

Views

Author

Seiichi Manyama, Jul 28 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k-3, k)*binomial(4*n-4*k, n-k-1));

Formula

G.f.: (g-1)/(g * (4-3*g)^2) where g=1+x*g^4.
G.f.: g * (1-g)^2/(1-4*g)^2 where g*(1-g)^3 = x.
a(n) = Sum_{k=0..n-1} binomial(4*k-3+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n-2,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k-2,k).
Showing 1-7 of 7 results.