A006419
a(n) = 2^(2*n+1) - C(2*n+3,n+1) + C(2*n+1,n).
Original entry on oeis.org
0, 1, 7, 37, 176, 794, 3473, 14893, 63004, 263950, 1097790, 4540386, 18696432, 76717268, 313889477, 1281220733, 5219170052, 21224674118, 86188320962, 349550141078, 1416102710912, 5731427140268, 23177285611082, 93655986978002, 378195990166136, 1526289367335244
Offset: 0
G.f. = x + 7*x^2 + 37*x^3 + 176*x^4 + 794*x^5 + 3473*x^6 + 14893*x^7 + 63004*x^8 + ...
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..1660
- Jason Bandlow and Kendra Killpatrick, An area-to-inv bijection between Dyck paths and 312-avoiding permutations,Electron. J. Combin. 8 (2001), no. 1, Research Paper 40, 16 pp.
- Miklós Bóna, Surprising Symmetries in Objects Counted by Catalan Numbers, Electronic J. Combin., 19 (2012), #P62, eq. (5).
- Pudwell, Lara; Scholten, Connor; Schrock, Tyler; Serrato, Alexa Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), Table 1.
- R. P. Stanley, F. Zanello, The Catalan case of Armstrong's conjecture on core partitions, arXiv preprint arXiv:1312.4352 [math.CO], 2013.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
-
f := n->2^(2*n+1)-binomial(2*n+3,n+1)+binomial(2*n+1,n); seq(f(n), n=0..30);
-
Table[2^(2 n + 1) - Binomial[2 n + 3, n + 1] +
Binomial[2 n + 1, n], {n, 0, 30}] (* Wesley Ivan Hurt, Mar 30 2014 *)
-
a(n):=sum(binomial(2*(n+1),n-k-1),k,0,n); /* Vladimir Kruchinin, Oct 23 2016 */
A062236
Sum of the levels of all nodes in all noncrossing trees with n edges.
Original entry on oeis.org
1, 8, 58, 408, 2831, 19496, 133638, 913200, 6226591, 42387168, 288194424, 1957583712, 13286865060, 90126841064, 611029568078, 4140789069408, 28050809681679, 189964288098632, 1286119453570746, 8705397371980728, 58912358137385559, 398607288093924192, 2696583955707785256
Offset: 1
- Harry J. Smith, Table of n, a(n) for n=1..200
- Emeric Deutsch and M. Noy, New statistics on non-crossing trees, in: Formal Power Series and Algebraic Combinatorics (Proceedings of the 12th International Conference, FPSAC'00, Moscow, Russia, 2000), pp. 667-676, Springer, Berlin, 2000.
- Emeric Deutsch and M. Noy, Statistics on non-crossing trees, Discrete Math., 254 (2002), 75-87 (see Th. 6). [From _N. J. A. Sloane_, Dec 17 2012]
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
-
a := n -> add(2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n,i),i=0..n-1)/n;
A062236 := n -> 2^(n-2)*(3*n-1)*hypergeom([-3*n,1-n,-n+4/3], [-n,-n+1/3], -1/2):
seq(simplify(A062236(n)), n = 1..29); # Peter Luschny, Oct 28 2022
-
Table[Sum[2^(n-2-k)*(n-k)*(3*n-3*k-1)*Binomial[3*n,k],{k,0,n-1}]/n,{n,1,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
-
{ for (n=1, 200, a=sum(i=0, n-1, 2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n, i))/n; write("b062236.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 03 2009
A386612
a(n) = Sum_{k=0..n-1} binomial(4*k+1,k) * binomial(4*n-4*k,n-k-1).
Original entry on oeis.org
0, 1, 13, 142, 1464, 14689, 145154, 1420812, 13818784, 133793940, 1291073809, 12426782294, 119371355672, 1144851458526, 10965655515588, 104919037771224, 1002960800712720, 9580390527192940, 91453374122574372, 872513477065735768, 8320168165323802464, 79305962393873976417
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(4*k+1, k)*binomial(4*n-4*k, n-k-1));
A386614
a(n) = Sum_{k=0..n-1} binomial(5*k+1,k) * binomial(5*n-5*k,n-k-1).
Original entry on oeis.org
0, 1, 16, 220, 2880, 36850, 465536, 5834852, 72744640, 903525715, 11191199200, 138323478980, 1706860996096, 21034268215120, 258934785258240, 3184696786012500, 39140208951032960, 480734044749851305, 5901368553964031600, 72410017973538837880, 888114187330722044800, 10888921795007470528060
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(5*k+1, k)*binomial(5*n-5*k, n-k-1));
A386616
a(n) = Sum_{k=0..n-1} binomial(6*k+1,k) * binomial(6*n-6*k,n-k-1).
Original entry on oeis.org
0, 1, 19, 315, 5000, 77785, 1196667, 18282742, 278031900, 4214278350, 63723788295, 961789682008, 14495501585664, 218216042892175, 3281961694927950, 49322417450239980, 740753733463215604, 11118981305235476010, 166821561372208253850, 2501861335268901337425, 37507747177968865536840
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(6*k+1, k)*binomial(6*n-6*k, n-k-1));
A075045
Coefficients A_n for the s=3 tennis ball problem.
Original entry on oeis.org
1, 9, 69, 502, 3564, 24960, 173325, 1196748, 8229849, 56427177, 386011116, 2635972920, 17974898872, 122430895956, 833108684637, 5664553564440, 38488954887171, 261369752763963, 1774016418598269, 12035694958994142, 81624256468292016, 553377268856455968
Offset: 0
- T. Amdeberhan, Integrality of a sum.
- Roland Bacher, On generating series of complementary plane trees, arXiv:math/0409050 [math.CO], 2004.
- Toufik Mansour and I. L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, table 1.
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), pp. 307-344 (A_n for s=3).
-
FussArea := proc(s,n)
local a,i,j ;
a := binomial((s+1)*n,n)*n/(s*n+1) ; ;
add(j *(n-j) *binomial((s+1)*j,j) *binomial((s+1)*(n-j),n-j) /(s*j+1) /(s*(n-j)+1),j=0..n) ;
a := a+binomial(s+1,2)*% ;
for j from 0 to n-1 do
for i from 0 to j do
i*(j-i) /(s*i+1) /(s*(j-i)+1) /(n-j)
*binomial((s+1)*i,i) *binomial((s+1)*(j-i),j-i)
*binomial((s+1)*(n-j)-2,n-1-j) ;
a := a-%*binomial(s+1,2) ;
end do:
end do:
a ;
end proc:
seq(FussArea(2,n),n=1..30) ; # R. J. Mathar, Mar 31 2023
-
FussArea[s_, n_] := Module[{a, i, j, pc}, a = Binomial[(s + 1)*n, n]*n/(s*n + 1); pc = Sum[j*(n - j)*Binomial[(s + 1)*j, j]*Binomial[(s + 1)*(n - j), n - j]/(s*j + 1)/(s*(n - j) + 1), {j, 0, n}]; a = a + Binomial[s + 1, 2]*pc; For[j = 0, j <= n - 1 , j++, For[i = 0, i <= j, i++, pc = i*(j - i)/(s*i + 1)/(s*(j - i) + 1)/(n - j)*Binomial[(s + 1)*i, i]* Binomial[(s + 1)*(j - i), j - i]*Binomial[(s + 1)*(n - j) - 2, n - 1 - j]; a = a - pc*Binomial[s + 1, 2]; ]]; a];
Table[FussArea[2, n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2023, after R. J. Mathar *)
A385004
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n,k).
Original entry on oeis.org
1, 5, 31, 200, 1311, 8665, 57556, 383556, 2561871, 17140007, 114819351, 769925568, 5166845124, 34696155564, 233113911208, 1566926561740, 10536427052463, 70872688450083, 476854924775869, 3209222876463192, 21602639249766951, 145444151677134153, 979397744169608784
Offset: 0
-
Table[(27/4)^n - Binomial[3*n, n] * (-1 + Hypergeometric2F1[1, -2*n, 1 + n, -1/2]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(3*n, k));
Showing 1-7 of 7 results.
Comments