cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A036829 a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).

Original entry on oeis.org

0, 1, 7, 48, 327, 2221, 15060, 102012, 690519, 4671819, 31596447, 213633696, 1444131108, 9760401756, 65957919496, 445671648228, 3011064814455, 20341769686311, 137412453018933, 928188965638464, 6269358748632207, 42343731580741821
Offset: 0

Views

Author

Keywords

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.

Crossrefs

Programs

  • Haskell
    a036829 n = sum $ map
       (\k -> (a007318 (3*k) k) * (a007318 (3*n-3*k-2) (n-k-1))) [0..n-1]
    -- Reinhard Zumkeller, May 24 2012
  • Mathematica
    Table[Sum[Binomial[3k,k]Binomial[3n-3k-2,n-k-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jan 10 2012 *)

Formula

G.f.: (g-g^2)/(3*g-1)^2 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
Recurrence: 8*(n-1)*(2*n-1)*a(n) = 6*(36*n^2-81*n+49)*a(n-1) - 81*(3*n-5)*(3*n-4)*a(n-2). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 3^(3*n-1)/2^(2*n+1). - Vaclav Kotesovec, Dec 29 2012
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(3*k,k)*x^k ). - Seiichi Manyama, Jul 19 2025
G.f.: (g-1)/(3-2*g)^2 where g=1+x*g^3. - Seiichi Manyama, Jul 26 2025

A386617 a(n) = Sum_{k=0..n-1} binomial(3*k+1,k) * binomial(3*n-3*k,n-k-1).

Original entry on oeis.org

0, 1, 10, 81, 610, 4436, 31626, 222681, 1554772, 10790721, 74560728, 513452604, 3526463304, 24168921568, 165357919850, 1129724254953, 7709039995368, 52551835079699, 357930487932282, 2436038623348521, 16568626556643738, 112626521811112464, 765201654587796312, 5196570956399432796
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(3*k+1, k)*binomial(3*n-3*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(3-2*g)^2 where g=1+x*g^3.
G.f.: g/((1-g)^2 * (1-3*g)^2) where g*(1-g)^2 = x.
a(n) = Sum_{k=0..n-1} binomial(3*k+1+l,k) * binomial(3*n-3*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(3*n+2,k).
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(2*n+k+2,k).

A386565 a(n) = Sum_{k=0..n-1} binomial(4*k-1,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 11, 111, 1091, 10596, 102237, 982458, 9415539, 90063180, 860278156, 8208539351, 78258171957, 745595635084, 7099714918062, 67574576298276, 642927956583123, 6115089154367484, 58146652079312580, 552769690436583532, 5253812277363417836, 49925987913040522128
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			(1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ) = x + 11*x^2/2 + 37*x^3 + 1091*x^4/4 + 10596*x^5/5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k-1, k)*binomial(4*n-4*k, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(4*k, k)/(3*k+1)*x^k)); concat(0, Vec(g*(g-1)/(4-3*g)^2))

Formula

G.f.: g*(g-1)/(4-3*g)^2 where g=1+x*g^4.
G.f.: g/(1-4*g)^2 where g*(1-g)^3 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ).
a(n) = Sum_{k=0..n-1} binomial(4*k-1+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k,k).

A386566 a(n) = Sum_{k=0..n-1} binomial(5*k-1,k) * binomial(5*n-5*k,n-k-1).

Original entry on oeis.org

0, 1, 14, 181, 2284, 28506, 353630, 4370584, 53882392, 663116347, 8150224204, 100073884670, 1227826127020, 15055154471696, 184508186225552, 2260299193652496, 27679951219660080, 338872887728053465, 4147618793911034330, 50753529798492061819, 620942367878256638264
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			(1/4) * log( Sum_{k>=0} binomial(5*k-1,k)*x^k ) = x + 7*x^2 + 181*x^3/3 + 571*x^4 + 28506*x^5/5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k-1, k)*binomial(5*n-5*k, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(5*k, k)/(4*k+1)*x^k)); concat(0, Vec(g*(g-1)/(5-4*g)^2))

Formula

G.f.: g*(g-1)/(5-4*g)^2 where g=1+x*g^5.
G.f.: g/(1-5*g)^2 where g*(1-g)^4 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/4) * log( Sum_{k>=0} binomial(5*k-1,k)*x^k ).
a(n) = Sum_{k=0..n-1} binomial(5*k-1+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k,k).
Conjecture D-finite with recurrence 196608*n*(4*n-3)*(2*n-1)*(18270873280*n -32560150837) *(4*n-1)*a(n) +1280*(-1399185802400000*n^5 +1022280893000000*n^4 +17669158913120000*n^3 -48968110172924750*n^2 +49502057719349955*n -17877514345852392)*a(n-1) +125000*(-61298198200000*n^5 +1447969779032500*n^4 -7721498995066250*n^3 +17474948768595875*n^2 -18352567310653770*n +7399184154389181)*a(n-2) +48828125*(5*n-11) *(5*n-14)*(4958243695*n -6717884799) *(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386567 a(n) = Sum_{k=0..n-1} binomial(6*k-1,k) * binomial(6*n-6*k,n-k-1).

Original entry on oeis.org

0, 1, 17, 268, 4129, 62955, 954392, 14417376, 217279857, 3269099590, 49125066135, 737516631908, 11064270530632, 165889863957065, 2486052264852180, 37241727274394640, 557707191712371729, 8349517132932620730, 124971965902300790390, 1870139909398530770760
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			(1/5) * log( Sum_{k>=0} binomial(6*k-1,k)*x^k ) = x + 17*x^2/2 + 268*x^3/3 + 4129*x^4/4 + 12591*x^5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(6*k-1, k)*binomial(6*n-6*k, n-k-1));
    
  • PARI
    my(N=20, x='x+O('x^N), g=sum(k=0, N, binomial(6*k, k)/(5*k+1)*x^k)); concat(0, Vec(g*(g-1)/(6-5*g)^2))

Formula

G.f.: g*(g-1)/(6-5*g)^2 where g=1+x*g^6.
G.f.: g/(1-6*g)^2 where g*(1-g)^5 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/5) * log( Sum_{k>=0} binomial(6*k-1,k)*x^k ).
a(n) = Sum_{k=0..n-1} binomial(6*k-1+l,k) * binomial(6*n-6*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(6*n,k).
a(n) = Sum_{k=0..n-1} 6^(n-k-1) * binomial(5*n+k,k).

A075045 Coefficients A_n for the s=3 tennis ball problem.

Original entry on oeis.org

1, 9, 69, 502, 3564, 24960, 173325, 1196748, 8229849, 56427177, 386011116, 2635972920, 17974898872, 122430895956, 833108684637, 5664553564440, 38488954887171, 261369752763963, 1774016418598269, 12035694958994142, 81624256468292016, 553377268856455968
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

See A049235 for more information.

Programs

  • Maple
    FussArea := proc(s,n)
        local a,i,j ;
        a := binomial((s+1)*n,n)*n/(s*n+1) ; ;
        add(j *(n-j) *binomial((s+1)*j,j) *binomial((s+1)*(n-j),n-j) /(s*j+1) /(s*(n-j)+1),j=0..n) ;
        a := a+binomial(s+1,2)*% ;
        for j from 0 to n-1 do
            for i from 0 to j do
                i*(j-i) /(s*i+1) /(s*(j-i)+1) /(n-j)
                *binomial((s+1)*i,i) *binomial((s+1)*(j-i),j-i)
                *binomial((s+1)*(n-j)-2,n-1-j) ;
                a := a-%*binomial(s+1,2) ;
            end do:
        end do:
        a ;
    end proc:
    seq(FussArea(2,n),n=1..30) ; # R. J. Mathar, Mar 31 2023
  • Mathematica
    FussArea[s_, n_] := Module[{a, i, j, pc}, a = Binomial[(s + 1)*n, n]*n/(s*n + 1); pc = Sum[j*(n - j)*Binomial[(s + 1)*j, j]*Binomial[(s + 1)*(n - j), n - j]/(s*j + 1)/(s*(n - j) + 1), {j, 0, n}]; a = a + Binomial[s + 1, 2]*pc; For[j = 0, j <= n - 1 , j++, For[i = 0, i <= j, i++, pc = i*(j - i)/(s*i + 1)/(s*(j - i) + 1)/(n - j)*Binomial[(s + 1)*i, i]* Binomial[(s + 1)*(j - i), j - i]*Binomial[(s + 1)*(n - j) - 2, n - 1 - j]; a = a - pc*Binomial[s + 1, 2]; ]]; a];
    Table[FussArea[2, n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2023, after R. J. Mathar *)

Formula

G.f.: seems to be (3*g-1)^(-2)*(1-g)^(-3) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
Conjecture: D-finite with recurrence 8*(2*n+3)*(7*n+1)*(n+1)*a(n) +6*(-252*n^3-477*n^2-220*n-11)*a(n-1) +81*(7*n+8)*(3*n-1)*(3*n+1)*a(n-2)=0. - Jean-François Alcover, Feb 07 2019
a(n) = (3n+2)*(n+1)*binomial(3n+3,n+1)/2/(2n+3) - A049235(n). [Merlini Theorem 2.5 for s=3] - R. J. Mathar, Oct 01 2021
From Seiichi Manyama, Jul 28 2025: (Start)
a(n) = Sum_{k=0..n} binomial(3*k+3+l,k) * binomial(3*n-3*k-l,n-k) for every real number l.
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n+4,k).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(2*n+k+3,k). (End)

A358091 Triangle read by rows. Coefficients of the polynomials P(n, x) = 2^(n-2)*(3*n-1)* hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x). T(n, k) = [x^k] P(n, x).

Original entry on oeis.org

1, 5, -6, 16, -60, 48, 44, -288, 660, -440, 112, -1056, 4032, -7280, 4368, 272, -3360, 17952, -52224, 81600, -45696, 640, -9792, 67200, -267520, 656640, -930240, 496128, 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664
Offset: 1

Views

Author

Peter Luschny, Oct 28 2022

Keywords

Examples

			[1]    1;
[2]    5,     -6;
[3]   16,    -60,     48;
[4]   44,   -288,    660,     -440;
[5]  112,  -1056,   4032,    -7280,    4368;
[6]  272,  -3360,  17952,   -52224,   81600,   -45696;
[7]  640,  -9792,  67200,  -267520,  656640,  -930240,   496128;
[8] 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664;
		

Crossrefs

Programs

  • SageMath
    def P(n):
        h = 2^(n-2)*(3*n-1)*hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x)
        return h.series(x, n+1).polynomial(SR)
    for n in range(1, 9): print(P(n).list())
    # To evaluate the polynomials use:
    def p(n, t): return Integer(P(n)(x=t).n())
    # For example the next statements yield A062236 and A000309.
    print([p(n, -1/2) for n in range(1, 21)])
    print([(-1)^n*p(n + 1, 1) for n in range(0, 22)])

Formula

P(n, -1/2) = A062236(n).
(-1)^n*P(n + 1, 1) = A000309(n).

A204387 Triangle read by rows: T(n,k) is number of noncrossing trees with k edges and path-length n, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 4, 1, 0, 0, 3, 6, 1, 0, 0, 4, 10, 8, 1, 0, 0, 0, 12, 21, 10, 1, 0, 0, 0, 12, 32, 36, 12, 1, 0, 0, 0, 6, 45, 72, 55, 14, 1, 0, 0, 0, 8, 36, 119, 140, 78, 16, 1, 0, 0, 0, 0, 46, 144, 270, 244, 105, 18, 1, 0, 0, 0, 0, 32, 164, 416, 550, 392, 136, 20, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 17 2012

Keywords

Comments

The number of nodes is k + 1. The path-length is the sum of the distances of all nodes from the root node. - Andrew Howroyd, Nov 19 2024

Examples

			Triangle begins:
1
0 1
0 2 1
0 0 4 1
0 0 3 6 1
0 0 4 10 8 1
0 0 0 12 21 10 1
0 0 0 12 32 36 12 1
		

Crossrefs

Row sums are A132332.
Column sums are A001764.
Cf. A062236.

Programs

  • PARI
    T(n)={my(g=1+O(x)); for(i=1, n, g=1/(1 - x*y*subst(g,y,x*y)^2)); [Vecrev(p/y) | p<-Vec(g-1)]}
    {my(A=T(10)); for(i=1, #A, print(A[i]))} \\ Andrew Howroyd, Nov 19 2024

Formula

From Andrew Howroyd, Nov 19 2024: (Start)
G.f.: A(x,y) satisfies A(x,y) = 1/(1 - x*y*A(x,x*y)^2).
T(k*(k+1)/2, k) = 2^(k-1).
T(n,k) = 0 for n > k*(k+1)/2.
Sum_{n>=1} n*T(n,k) = A062236(k). (End)

Extensions

a(34) corrected and a(42) onwards from Andrew Howroyd, Nov 19 2024
Showing 1-8 of 8 results.