cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A386616 a(n) = Sum_{k=0..n-1} binomial(6*k+1,k) * binomial(6*n-6*k,n-k-1).

Original entry on oeis.org

0, 1, 19, 315, 5000, 77785, 1196667, 18282742, 278031900, 4214278350, 63723788295, 961789682008, 14495501585664, 218216042892175, 3281961694927950, 49322417450239980, 740753733463215604, 11118981305235476010, 166821561372208253850, 2501861335268901337425, 37507747177968865536840
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(6*k+1, k)*binomial(6*n-6*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(6-5*g)^2 where g=1+x*g^6.
G.f.: g/((1-g)^2 * (1-6*g)^2) where g*(1-g)^5 = x.
a(n) = Sum_{k=0..n-1} binomial(6*k+1+l,k) * binomial(6*n-6*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(6*n+2,k).
a(n) = Sum_{k=0..n-1} 6^(n-k-1) * binomial(5*n+k+2,k).

A386368 a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k-2,n-k-1).

Original entry on oeis.org

0, 1, 16, 246, 3736, 56421, 849432, 12763878, 191548464, 2871970110, 43031833656, 644432826478, 9646983339456, 144366433138955, 2159869510669320, 32306874783230556, 483151884326658144, 7224464127509984490, 108011596038055519680, 1614676987907480393940
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2025

Keywords

Examples

			(1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ) = x + 8*x^2 + 82*x^3 + 934*x^4 + 56421*x^5/5 + ...
		

Crossrefs

Programs

  • Maple
    A386368 := proc(n::integer)
        add(binomial(6*k,k)*binomial(6*n-6*k-2,n-k-1),k=0..n-1) ;
    end proc:
    seq(A386368(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
  • PARI
    a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k-2, n-k-1));
    
  • PARI
    my(N=20, x='x+O('x^N), g=x*sum(k=0, N, binomial(6*k+4, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-6*g)^2))

Formula

G.f.: g*(1-g)/(1-6*g)^2 where g*(1-g)^5 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ).
G.f.: (g-1)/(6-5*g)^2 where g=1+x*g^6.
a(n) = Sum_{k=0..n-1} binomial(6*k-2+l,k) * binomial(6*n-6*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(6*n-1,k).
a(n) = Sum_{k=0..n-1} 6^(n-k-1) * binomial(5*n+k-1,k).
Conjecture D-finite with recurrence 48828125*(n-1)*(5*n-4)*(5*n-3) *(432862082629612805*n -769306661967834399) *(5*n-2)*(5*n-1)*a(n) +1125000*(-405245406115816219575000*n^6 +2613180799468910510392500*n^5 -7667164406968651479521250*n^4 +13834502135358262506660375*n^3 -16251583347734702117341345*n^2 +11251247074043948959380314*n -3395699069351241765495720)*a(n-1) +33592320*(142281690918326440537500*n^6 -1266424338521609272012500*n^5 +5236041263583271687953750*n^4 -12786608152035075786775875*n^3 +18838556229131595646260055*n^2 -15323925851720394901667853*n +5240681406952416812161236)*a(n-2) -53444359913472*(6*n-17) *(395547729523405*n -538181211711288)*(6*n-13) *(3*n-7)*(2*n-5) *(3*n-8)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386565 a(n) = Sum_{k=0..n-1} binomial(4*k-1,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 11, 111, 1091, 10596, 102237, 982458, 9415539, 90063180, 860278156, 8208539351, 78258171957, 745595635084, 7099714918062, 67574576298276, 642927956583123, 6115089154367484, 58146652079312580, 552769690436583532, 5253812277363417836, 49925987913040522128
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			(1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ) = x + 11*x^2/2 + 37*x^3 + 1091*x^4/4 + 10596*x^5/5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k-1, k)*binomial(4*n-4*k, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(4*k, k)/(3*k+1)*x^k)); concat(0, Vec(g*(g-1)/(4-3*g)^2))

Formula

G.f.: g*(g-1)/(4-3*g)^2 where g=1+x*g^4.
G.f.: g/(1-4*g)^2 where g*(1-g)^3 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ).
a(n) = Sum_{k=0..n-1} binomial(4*k-1+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k,k).

A386566 a(n) = Sum_{k=0..n-1} binomial(5*k-1,k) * binomial(5*n-5*k,n-k-1).

Original entry on oeis.org

0, 1, 14, 181, 2284, 28506, 353630, 4370584, 53882392, 663116347, 8150224204, 100073884670, 1227826127020, 15055154471696, 184508186225552, 2260299193652496, 27679951219660080, 338872887728053465, 4147618793911034330, 50753529798492061819, 620942367878256638264
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			(1/4) * log( Sum_{k>=0} binomial(5*k-1,k)*x^k ) = x + 7*x^2 + 181*x^3/3 + 571*x^4 + 28506*x^5/5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k-1, k)*binomial(5*n-5*k, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(5*k, k)/(4*k+1)*x^k)); concat(0, Vec(g*(g-1)/(5-4*g)^2))

Formula

G.f.: g*(g-1)/(5-4*g)^2 where g=1+x*g^5.
G.f.: g/(1-5*g)^2 where g*(1-g)^4 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/4) * log( Sum_{k>=0} binomial(5*k-1,k)*x^k ).
a(n) = Sum_{k=0..n-1} binomial(5*k-1+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k,k).
Conjecture D-finite with recurrence 196608*n*(4*n-3)*(2*n-1)*(18270873280*n -32560150837) *(4*n-1)*a(n) +1280*(-1399185802400000*n^5 +1022280893000000*n^4 +17669158913120000*n^3 -48968110172924750*n^2 +49502057719349955*n -17877514345852392)*a(n-1) +125000*(-61298198200000*n^5 +1447969779032500*n^4 -7721498995066250*n^3 +17474948768595875*n^2 -18352567310653770*n +7399184154389181)*a(n-2) +48828125*(5*n-11) *(5*n-14)*(4958243695*n -6717884799) *(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386615 a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k,n-k-1).

Original entry on oeis.org

0, 1, 18, 291, 4550, 70065, 1069872, 16251694, 246010014, 3714826350, 55993450830, 842823848448, 12672667549488, 190381643518855, 2858101359683400, 42882348756992220, 643085584745669134, 9640075656634321770, 144457232389535563980, 2164044325920832653825, 32409930873969839549610
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k, n-k-1));

Formula

G.f.: g^2 * (g-1)/(6-5*g)^2 where g=1+x*g^6.
G.f.: g/((1-g) * (1-6*g)^2) where g*(1-g)^5 = x.
a(n) = Sum_{k=0..n-1} binomial(6*k+l,k) * binomial(6*n-6*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(6*n+1,k).
a(n) = Sum_{k=0..n-1} 6^(n-k-1) * binomial(5*n+k+1,k).
Showing 1-5 of 5 results.