A386616
a(n) = Sum_{k=0..n-1} binomial(6*k+1,k) * binomial(6*n-6*k,n-k-1).
Original entry on oeis.org
0, 1, 19, 315, 5000, 77785, 1196667, 18282742, 278031900, 4214278350, 63723788295, 961789682008, 14495501585664, 218216042892175, 3281961694927950, 49322417450239980, 740753733463215604, 11118981305235476010, 166821561372208253850, 2501861335268901337425, 37507747177968865536840
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(6*k+1, k)*binomial(6*n-6*k, n-k-1));
A386368
a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k-2,n-k-1).
Original entry on oeis.org
0, 1, 16, 246, 3736, 56421, 849432, 12763878, 191548464, 2871970110, 43031833656, 644432826478, 9646983339456, 144366433138955, 2159869510669320, 32306874783230556, 483151884326658144, 7224464127509984490, 108011596038055519680, 1614676987907480393940
Offset: 0
(1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ) = x + 8*x^2 + 82*x^3 + 934*x^4 + 56421*x^5/5 + ...
-
A386368 := proc(n::integer)
add(binomial(6*k,k)*binomial(6*n-6*k-2,n-k-1),k=0..n-1) ;
end proc:
seq(A386368(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k-2, n-k-1));
-
my(N=20, x='x+O('x^N), g=x*sum(k=0, N, binomial(6*k+4, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-6*g)^2))
A386565
a(n) = Sum_{k=0..n-1} binomial(4*k-1,k) * binomial(4*n-4*k,n-k-1).
Original entry on oeis.org
0, 1, 11, 111, 1091, 10596, 102237, 982458, 9415539, 90063180, 860278156, 8208539351, 78258171957, 745595635084, 7099714918062, 67574576298276, 642927956583123, 6115089154367484, 58146652079312580, 552769690436583532, 5253812277363417836, 49925987913040522128
Offset: 0
(1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ) = x + 11*x^2/2 + 37*x^3 + 1091*x^4/4 + 10596*x^5/5 + ...
-
a(n) = sum(k=0, n-1, binomial(4*k-1, k)*binomial(4*n-4*k, n-k-1));
-
my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(4*k, k)/(3*k+1)*x^k)); concat(0, Vec(g*(g-1)/(4-3*g)^2))
A386566
a(n) = Sum_{k=0..n-1} binomial(5*k-1,k) * binomial(5*n-5*k,n-k-1).
Original entry on oeis.org
0, 1, 14, 181, 2284, 28506, 353630, 4370584, 53882392, 663116347, 8150224204, 100073884670, 1227826127020, 15055154471696, 184508186225552, 2260299193652496, 27679951219660080, 338872887728053465, 4147618793911034330, 50753529798492061819, 620942367878256638264
Offset: 0
(1/4) * log( Sum_{k>=0} binomial(5*k-1,k)*x^k ) = x + 7*x^2 + 181*x^3/3 + 571*x^4 + 28506*x^5/5 + ...
-
a(n) = sum(k=0, n-1, binomial(5*k-1, k)*binomial(5*n-5*k, n-k-1));
-
my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(5*k, k)/(4*k+1)*x^k)); concat(0, Vec(g*(g-1)/(5-4*g)^2))
A386615
a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k,n-k-1).
Original entry on oeis.org
0, 1, 18, 291, 4550, 70065, 1069872, 16251694, 246010014, 3714826350, 55993450830, 842823848448, 12672667549488, 190381643518855, 2858101359683400, 42882348756992220, 643085584745669134, 9640075656634321770, 144457232389535563980, 2164044325920832653825, 32409930873969839549610
Offset: 0
-
a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k, n-k-1));
Showing 1-5 of 5 results.