cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062236 Sum of the levels of all nodes in all noncrossing trees with n edges.

Original entry on oeis.org

1, 8, 58, 408, 2831, 19496, 133638, 913200, 6226591, 42387168, 288194424, 1957583712, 13286865060, 90126841064, 611029568078, 4140789069408, 28050809681679, 189964288098632, 1286119453570746, 8705397371980728, 58912358137385559, 398607288093924192, 2696583955707785256
Offset: 1

Views

Author

Emeric Deutsch, Jun 30 2001

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n,i),i=0..n-1)/n;
    A062236 := n -> 2^(n-2)*(3*n-1)*hypergeom([-3*n,1-n,-n+4/3], [-n,-n+1/3], -1/2):
    seq(simplify(A062236(n)), n = 1..29); # Peter Luschny, Oct 28 2022
  • Mathematica
    Table[Sum[2^(n-2-k)*(n-k)*(3*n-3*k-1)*Binomial[3*n,k],{k,0,n-1}]/n,{n,1,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • PARI
    { for (n=1, 200, a=sum(i=0, n-1, 2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n, i))/n; write("b062236.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 03 2009

Formula

G.f.: g*(g-1)/(3-2*g)^2, where function g=g(x) satisfies g=1+xg^3, and can be expressed as g(x) = 2*sin(arcsin(3*sqrt(3*x)/2)/3)/sqrt(3*x). [Corrected by Max Alekseyev, Oct 27 2022]
g(x) = Sum_{n >= 0} binomial(3*n,n) / (2*n+1) * x^n. - Max Alekseyev, Oct 27 2022
Recurrence: 8*n*(2*n-1)*a(n) = 6*(36*n^2-45*n+10)*a(n-1) - 81*(3*n-5)*(3*n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 3^(3*n)/2^(2*n+2). - Vaclav Kotesovec, Oct 13 2012
a(n) = Sum_{i=0..n-1} C(3*i-1,i)*C(3*(n-i),n-i-1). - Vladimir Kruchinin, Jun 09 2020
a(n) = 2^(n-2)*(3*n-1)*hypergeometric([-3*n, 1-n, -n+4/3], [-n, -n+1/3], -1/2). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Seiichi Manyama, Jul 26 2025: (Start)
G.f.: g/(1-3*g)^2 where g*(1-g)^2 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/2) * log( Sum_{k>=0} binomial(3*k-1,k)*x^k ). (End)
From Seiichi Manyama, Jul 29 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(3*k-1+l,k) * binomial(3*n-3*k-l,n-k-1) for every real number l. This is a generalization of a formula by Vladimir Kruchinin, Jun 09 2020.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(3*n,k).
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(2*n+k,k). (End)

A049235 Sum of balls on the lawn for the s=3 tennis ball problem.

Original entry on oeis.org

0, 6, 75, 708, 5991, 47868, 369315, 2783448, 20631126, 151026498, 1094965524, 7878119760, 56330252412, 400703095284, 2838060684483, 20027058300144, 140874026880204, 988194254587242, 6915098239841331, 48285969880645908, 336521149274459979
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

The four sequences T_n, Y_n, A_n, S_n for s=2 are A000108, A000302, A000346, A031970, for s=3, A001764, A006256, A075045, this sequence, for s=4, A002293, A078995, A078999, A078516.
Cf. A079486.

Programs

  • Maple
    T := (n,s)->binomial(s*n,n)/((s-1)*n+1); Y := (n,s)->add(binomial(s*k,k)*binomial(s*(n-k),n-k),k=0..n); A := (n,s)->Y(n+1,s)/2-(1/2)*((2*s-3)*n+2*s-2)*T(n+1,s); S := (n,s)->(1/2)*(s*n^2+(3*s-1)*n+2*s)*T(n+1,s)-Y(n+1,s)/2;
    F := 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3);  G := t*(t-1)^2;   Ginv := RootOf(G-x,t);
    ogf := series(eval(F,t=Ginv), x=0, 20);
  • Mathematica
    a[n_] := a[n] = Switch[n, 0, 0, 1, 6, 2, 75, 3, 708, 4, 5991, _, -((1/(8*(2*(n-5)^2 + 25*(n-5) + 78)))*(-(531441*(n-5)^2* a[n-5]) + 196830*(n-5)^2*a[n-4] - 24057*(n-5)^2*a[n-3] + 1809*(n-5)^2*a[n-2] - 232*(n-5)^2*a[n-1] - 1594323*(n-5)*a[n-5] + 747954*(n-5)*a[n-4] - 120285*(n-5)*a[n-3] + 16362*(n-5)*a[n-2] - 2798*(n-5)*a[n-1] - 1180980*a[n-5] + 656100*a[n-4] - 131220*a[n-3] + 36825*a[n-2] - 8352*a[n-1]))];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2023, after Robert Israel *)

Formula

a(n) is asymptotic to c*sqrt(n)*(27/4)^n with c=2.4... - Benoit Cloitre, Jan 26 2003, c = 81*sqrt(3/Pi)/32 = 2.4735502165085321... - Vaclav Kotesovec, Feb 07 2019
G.f.: F(G^(-1)(x)) where F = 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3) and G = t*(t-1)^2. - Mark van Hoeij, Oct 30 2011
D-finite with recurrence (531441*n^2 + 1594323*n + 1180980)*a(n) + (-196830*n^2 - 747954*n - 656100)*a(n + 1) + (24057*n^2 + 120285*n + 131220)*a(n + 2) + (-1809*n^2 - 16362*n - 36825)*a(n + 3) + (232*n^2 + 2798*n + 8352)*a(n + 4) + (-16*n^2 - 200*n - 624)*a(n + 5) = 0. - Robert Israel, Jun 20 2019

A386617 a(n) = Sum_{k=0..n-1} binomial(3*k+1,k) * binomial(3*n-3*k,n-k-1).

Original entry on oeis.org

0, 1, 10, 81, 610, 4436, 31626, 222681, 1554772, 10790721, 74560728, 513452604, 3526463304, 24168921568, 165357919850, 1129724254953, 7709039995368, 52551835079699, 357930487932282, 2436038623348521, 16568626556643738, 112626521811112464, 765201654587796312, 5196570956399432796
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(3*k+1, k)*binomial(3*n-3*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(3-2*g)^2 where g=1+x*g^3.
G.f.: g/((1-g)^2 * (1-3*g)^2) where g*(1-g)^2 = x.
a(n) = Sum_{k=0..n-1} binomial(3*k+1+l,k) * binomial(3*n-3*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(3*n+2,k).
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(2*n+k+2,k).

A361960 Total semiperimeter of 2-Fuss-Catalan polyominoes of length 2n.

Original entry on oeis.org

2, 12, 71, 430, 2652, 16576, 104652, 665874, 4263050, 27430260, 177233355, 1149159336, 7473264736, 48725661120, 318403991656, 2084753927898, 13673789668854, 89825336129620, 590901795716925, 3892055708986830, 25664871706721940, 169414775012098560, 1119378775384200240, 7402571891557073400, 48993463632294517752, 324501821324483687856
Offset: 1

Views

Author

R. J. Mathar, Mar 31 2023

Keywords

Crossrefs

Cf. A024482 (1-Fuss-Catalan), A075045 (total area), A361961 (3-Fuss-Catalan).

Programs

  • Maple
    Per := proc(s,p,n)
        local i,j,a ;
        a := 0 ;
        for i from 0 to n-1 do
        for j from 0 to n-1-i do
            a := a+ (-1)^j*p^(n+1+i+(s+1)*j) *binomial(n-1+i,i)*binomial(n,j)*binomial(n+s*j,n-1-i-j)/(1-p)^(i+j) ;
        end do:
        end do:
        expand(a/n) ;
        factor(%) ;
    end proc:
    Per1std := proc(s,n)
        local p;
        Per(s,p,n) ;
        diff(%,p) ;
        factor(%) ;
        subs(p=1,%) ;
    end proc:
    seq(Per1std(2,n),n=1..30) ;

Formula

Conjecture: D-finite with recurrence 4*n*(2*n+1)*a(n) -6*n*(11*n-5)*a(n-1) +3*(43*n^2-169*n+130)*a(n-2) -36*(3*n-8)*(3*n-10)*a(n-3)=0.
Showing 1-4 of 4 results.