A078995
a(n) = Sum_{k=0..n} C(4*k,k)*C(4*(n-k),n-k).
Original entry on oeis.org
1, 8, 72, 664, 6184, 57888, 543544, 5113872, 48180456, 454396000, 4288773152, 40503496536, 382701222296, 3617396099936, 34203591636048, 323492394385824, 3060238763412072, 28955508198895584, 274018698082833760, 2593539713410178528, 24550565251665845664
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (Y_n for s=4).
- Rui Duarte and António Guedes de Oliveira, Short note on the convolution of binomial coefficients, arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.
-
series(eval(g/(3*g-4), g=RootOf(g = 1+x*g^4,g))^2, x=0, 30); # Mark van Hoeij, May 06 2013
-
Table[Sum[Binomial[4*k, k]*Binomial[4*(n - k), n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2012 *)
-
a(n) = sum(k=0, n, binomial(4*k, k)*binomial(4*(n-k), n-k)); \\ Michel Marcus, May 09 2020
A031970
Tennis ball problem: Balls 1 and 2 are thrown into a room; you throw one on lawn; then balls 3 and 4 are thrown in and you throw any of the 3 balls onto the lawn; then balls 5 and 6 are thrown in and you throw one of the 4 balls onto the lawn; after n turns, consider all possible collections on lawn and add all the values.
Original entry on oeis.org
0, 3, 23, 131, 664, 3166, 14545, 65187, 287060, 1247690, 5368670, 22917198, 97195968, 410030812, 1722027973, 7204620067, 30044212828, 124932768082, 518215690018, 2144815618522, 8859729437488, 36533517261412, 150410878895818, 618371102344846, 2538971850705064, 10412490129563556
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ilani Axelrod-Freed, 312-Avoiding Reduced Valid Hook Configurations and Duck Words, arXiv:2010.11834 [math.CO], 2020. See Definition 5.3 p. 14.
- Colin L. Mallows and Lou Shapiro, Balls on the Lawn, J. Integer Sequences, Vol. 2, 1999, #5.
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
-
List([0..30], n-> (2*n^2+5*n+4)*Binomial(2*n+1, n)/(n+2) - 2^(2*n+1)); # G. C. Greubel, Apr 02 2019
-
[(2*n^2+5*n+4)*Binomial(2*n+1, n)/(n+2) - 2^(2*n+1): n in [0..30]]; // G. C. Greubel, Apr 02 2019
-
CoefficientList[Series[(1-9*x+20*x^2-(1-7*x+8*x^2)*Sqrt[1-4*x])/(2*x^2*(1 -8*x+16*x^2)), {x,0,30}],x] (* G. C. Greubel, Apr 02 2019 *)
-
a(n) = (2*n^2 + 5*n + 4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1);
/* Joerg Arndt, Dec 04 2012 */
-
[(2*n^2+5*n+4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1) for n in (0..30)] # G. C. Greubel, Apr 02 2019
A075045
Coefficients A_n for the s=3 tennis ball problem.
Original entry on oeis.org
1, 9, 69, 502, 3564, 24960, 173325, 1196748, 8229849, 56427177, 386011116, 2635972920, 17974898872, 122430895956, 833108684637, 5664553564440, 38488954887171, 261369752763963, 1774016418598269, 12035694958994142, 81624256468292016, 553377268856455968
Offset: 0
- T. Amdeberhan, Integrality of a sum.
- Roland Bacher, On generating series of complementary plane trees, arXiv:math/0409050 [math.CO], 2004.
- Toufik Mansour and I. L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, table 1.
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), pp. 307-344 (A_n for s=3).
-
FussArea := proc(s,n)
local a,i,j ;
a := binomial((s+1)*n,n)*n/(s*n+1) ; ;
add(j *(n-j) *binomial((s+1)*j,j) *binomial((s+1)*(n-j),n-j) /(s*j+1) /(s*(n-j)+1),j=0..n) ;
a := a+binomial(s+1,2)*% ;
for j from 0 to n-1 do
for i from 0 to j do
i*(j-i) /(s*i+1) /(s*(j-i)+1) /(n-j)
*binomial((s+1)*i,i) *binomial((s+1)*(j-i),j-i)
*binomial((s+1)*(n-j)-2,n-1-j) ;
a := a-%*binomial(s+1,2) ;
end do:
end do:
a ;
end proc:
seq(FussArea(2,n),n=1..30) ; # R. J. Mathar, Mar 31 2023
-
FussArea[s_, n_] := Module[{a, i, j, pc}, a = Binomial[(s + 1)*n, n]*n/(s*n + 1); pc = Sum[j*(n - j)*Binomial[(s + 1)*j, j]*Binomial[(s + 1)*(n - j), n - j]/(s*j + 1)/(s*(n - j) + 1), {j, 0, n}]; a = a + Binomial[s + 1, 2]*pc; For[j = 0, j <= n - 1 , j++, For[i = 0, i <= j, i++, pc = i*(j - i)/(s*i + 1)/(s*(j - i) + 1)/(n - j)*Binomial[(s + 1)*i, i]* Binomial[(s + 1)*(j - i), j - i]*Binomial[(s + 1)*(n - j) - 2, n - 1 - j]; a = a - pc*Binomial[s + 1, 2]; ]]; a];
Table[FussArea[2, n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2023, after R. J. Mathar *)
A078516
Sum of balls on the lawn for the s=4 tennis ball problem.
Original entry on oeis.org
0, 10, 174, 2298, 27258, 305574, 3309444, 35022618, 364559760, 3748221288, 38170570414, 385768464918, 3874673308452, 38718126671076, 385227806897448, 3818752082440794, 37735160423265504, 371852044352248824, 3655440051907792536, 35857177310350860328
Offset: 0
- D. Merlini, R. Sprugnoli, and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (S_n for s=4).
A079486
Number of different solutions to a variant of the 3-ball tennis ball problem.
Original entry on oeis.org
3, 15, 103, 879, 8787, 99061, 1227369, 16409937, 233588249, 3504149013, 54963273921, 895797910129, 15094359120933, 261882874511985, 4662472442136561, 84940003965749601, 1579633610378515989, 29927014639635474589, 576597813697577550447, 11280469732919709557493
Offset: 1
Larger terms through to a(12) computed by Matt Richey.
A078999
Coefficients A_n for the s=4 tennis ball problem.
Original entry on oeis.org
1, 14, 156, 1622, 16347, 161970, 1588176, 15465222, 149866020, 1447117432, 13935821924, 133921143546, 1284811863298, 12309517103724, 117803253946752, 1126336913303526, 10760609522499660, 102733711144434216, 980250448431562864, 9348504508099893272
Offset: 0
-
FussArea := proc(s,n)
local a,i,j ;
a := binomial((s+1)*n,n)*n/(s*n+1) ; ;
add(j *(n-j) *binomial((s+1)*j,j) *binomial((s+1)*(n-j),n-j) /(s*j+1) /(s*(n-j)+1),j=0..n) ;
a := a+binomial(s+1,2)*% ;
for j from 0 to n-1 do
for i from 0 to j do
i*(j-i) /(s*i+1) /(s*(j-i)+1) /(n-j)
*binomial((s+1)*i,i) *binomial((s+1)*(j-i),j-i)
*binomial((s+1)*(n-j)-2,n-1-j) ;
a := a-%*binomial(s+1,2) ;
end do:
end do:
a ;
end proc:
seq(FussArea(3,n),n=1..30) ; # R. J. Mathar, Mar 31 2023
-
FussArea[s_, n_] := Module[{a, i, j, pc}, a = Binomial[(s + 1)*n, n]*n/(s*n + 1); pc = Sum[j*(n - j)*Binomial[(s + 1)*j, j]*Binomial[(s + 1)*(n - j), n - j]/(s*j + 1)/(s*(n - j) + 1), {j, 0, n}]; a = a + Binomial[s + 1, 2]*pc; For[j = 0, j <= n - 1 , j++, For[i = 0, i <= j, i++, pc = i*(j - i)/(s*i + 1)/(s*(j - i) + 1)/(n - j)*Binomial[(s + 1)*i, i]* Binomial[(s + 1)*(j - i), j - i]*Binomial[(s + 1)*(n - j) - 2, n - 1 - j]; a = a - pc*Binomial[s + 1, 2]; ]]; a];
Table[FussArea[3, n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2023, after R. J. Mathar *)
A171074
A115112 with initial term changed from 0 to 1.
Original entry on oeis.org
1, 4, 18, 68, 250, 922, 3430, 12868, 48618, 184754, 705430, 2704154, 10400598, 40116598, 155117518, 601080388, 2333606218, 9075135298, 35345263798, 137846528818, 538257874438, 2104098963718, 8233430727598, 32247603683098
Offset: 1
- David Scambler, Just for fun, more tennis balls, Posting to the Sequence Fans Mailing List, Aug 25 2010.
Showing 1-7 of 7 results.
Comments