cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049235 Sum of balls on the lawn for the s=3 tennis ball problem.

Original entry on oeis.org

0, 6, 75, 708, 5991, 47868, 369315, 2783448, 20631126, 151026498, 1094965524, 7878119760, 56330252412, 400703095284, 2838060684483, 20027058300144, 140874026880204, 988194254587242, 6915098239841331, 48285969880645908, 336521149274459979
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

The four sequences T_n, Y_n, A_n, S_n for s=2 are A000108, A000302, A000346, A031970, for s=3, A001764, A006256, A075045, this sequence, for s=4, A002293, A078995, A078999, A078516.
Cf. A079486.

Programs

  • Maple
    T := (n,s)->binomial(s*n,n)/((s-1)*n+1); Y := (n,s)->add(binomial(s*k,k)*binomial(s*(n-k),n-k),k=0..n); A := (n,s)->Y(n+1,s)/2-(1/2)*((2*s-3)*n+2*s-2)*T(n+1,s); S := (n,s)->(1/2)*(s*n^2+(3*s-1)*n+2*s)*T(n+1,s)-Y(n+1,s)/2;
    F := 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3);  G := t*(t-1)^2;   Ginv := RootOf(G-x,t);
    ogf := series(eval(F,t=Ginv), x=0, 20);
  • Mathematica
    a[n_] := a[n] = Switch[n, 0, 0, 1, 6, 2, 75, 3, 708, 4, 5991, _, -((1/(8*(2*(n-5)^2 + 25*(n-5) + 78)))*(-(531441*(n-5)^2* a[n-5]) + 196830*(n-5)^2*a[n-4] - 24057*(n-5)^2*a[n-3] + 1809*(n-5)^2*a[n-2] - 232*(n-5)^2*a[n-1] - 1594323*(n-5)*a[n-5] + 747954*(n-5)*a[n-4] - 120285*(n-5)*a[n-3] + 16362*(n-5)*a[n-2] - 2798*(n-5)*a[n-1] - 1180980*a[n-5] + 656100*a[n-4] - 131220*a[n-3] + 36825*a[n-2] - 8352*a[n-1]))];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2023, after Robert Israel *)

Formula

a(n) is asymptotic to c*sqrt(n)*(27/4)^n with c=2.4... - Benoit Cloitre, Jan 26 2003, c = 81*sqrt(3/Pi)/32 = 2.4735502165085321... - Vaclav Kotesovec, Feb 07 2019
G.f.: F(G^(-1)(x)) where F = 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3) and G = t*(t-1)^2. - Mark van Hoeij, Oct 30 2011
D-finite with recurrence (531441*n^2 + 1594323*n + 1180980)*a(n) + (-196830*n^2 - 747954*n - 656100)*a(n + 1) + (24057*n^2 + 120285*n + 131220)*a(n + 2) + (-1809*n^2 - 16362*n - 36825)*a(n + 3) + (232*n^2 + 2798*n + 8352)*a(n + 4) + (-16*n^2 - 200*n - 624)*a(n + 5) = 0. - Robert Israel, Jun 20 2019

A031970 Tennis ball problem: Balls 1 and 2 are thrown into a room; you throw one on lawn; then balls 3 and 4 are thrown in and you throw any of the 3 balls onto the lawn; then balls 5 and 6 are thrown in and you throw one of the 4 balls onto the lawn; after n turns, consider all possible collections on lawn and add all the values.

Original entry on oeis.org

0, 3, 23, 131, 664, 3166, 14545, 65187, 287060, 1247690, 5368670, 22917198, 97195968, 410030812, 1722027973, 7204620067, 30044212828, 124932768082, 518215690018, 2144815618522, 8859729437488, 36533517261412, 150410878895818, 618371102344846, 2538971850705064, 10412490129563556
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> (2*n^2+5*n+4)*Binomial(2*n+1, n)/(n+2) - 2^(2*n+1)); # G. C. Greubel, Apr 02 2019
  • Magma
    [(2*n^2+5*n+4)*Binomial(2*n+1, n)/(n+2) - 2^(2*n+1): n in [0..30]]; // G. C. Greubel, Apr 02 2019
    
  • Mathematica
    CoefficientList[Series[(1-9*x+20*x^2-(1-7*x+8*x^2)*Sqrt[1-4*x])/(2*x^2*(1 -8*x+16*x^2)), {x,0,30}],x] (* G. C. Greubel, Apr 02 2019 *)
  • PARI
    a(n) = (2*n^2 + 5*n + 4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1);
    /* Joerg Arndt, Dec 04 2012 */
    
  • Sage
    [(2*n^2+5*n+4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1) for n in (0..30)] # G. C. Greubel, Apr 02 2019
    

Formula

a(n) = (2*n^2 + 5*n + 4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1). - Colin Mallows.
a(n) = Sum_{i=0..n-1} (4*n-4*i-1)*A028364(n,i), where A028364 is a Catalan triangle. e.g. for n=3 T[3..] = [5,7,9,14] then S(3) = 131 = 11*5 + 7*7 + 3*9. - David Scambler, Apr 27 2009
G.f.: (1-9*x+20*x^2-(1-7*x+8*x^2)*sqrt(1-4*x))/(2*x^2*(1-8*x+16*x^2)). - Vladimir Kruchinin, Apr 02 2019
D-finite with recurrence: (n+2)*a(n) +(-15*n-14)*a(n-1) +2*(40*n-3)*a(n-2) +8*(-22*n+25)*a(n-3) +64*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jan 28 2020

Extensions

More terms from Joerg Arndt, Dec 04 2012
Showing 1-2 of 2 results.