cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049235 Sum of balls on the lawn for the s=3 tennis ball problem.

Original entry on oeis.org

0, 6, 75, 708, 5991, 47868, 369315, 2783448, 20631126, 151026498, 1094965524, 7878119760, 56330252412, 400703095284, 2838060684483, 20027058300144, 140874026880204, 988194254587242, 6915098239841331, 48285969880645908, 336521149274459979
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

The four sequences T_n, Y_n, A_n, S_n for s=2 are A000108, A000302, A000346, A031970, for s=3, A001764, A006256, A075045, this sequence, for s=4, A002293, A078995, A078999, A078516.
Cf. A079486.

Programs

  • Maple
    T := (n,s)->binomial(s*n,n)/((s-1)*n+1); Y := (n,s)->add(binomial(s*k,k)*binomial(s*(n-k),n-k),k=0..n); A := (n,s)->Y(n+1,s)/2-(1/2)*((2*s-3)*n+2*s-2)*T(n+1,s); S := (n,s)->(1/2)*(s*n^2+(3*s-1)*n+2*s)*T(n+1,s)-Y(n+1,s)/2;
    F := 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3);  G := t*(t-1)^2;   Ginv := RootOf(G-x,t);
    ogf := series(eval(F,t=Ginv), x=0, 20);
  • Mathematica
    a[n_] := a[n] = Switch[n, 0, 0, 1, 6, 2, 75, 3, 708, 4, 5991, _, -((1/(8*(2*(n-5)^2 + 25*(n-5) + 78)))*(-(531441*(n-5)^2* a[n-5]) + 196830*(n-5)^2*a[n-4] - 24057*(n-5)^2*a[n-3] + 1809*(n-5)^2*a[n-2] - 232*(n-5)^2*a[n-1] - 1594323*(n-5)*a[n-5] + 747954*(n-5)*a[n-4] - 120285*(n-5)*a[n-3] + 16362*(n-5)*a[n-2] - 2798*(n-5)*a[n-1] - 1180980*a[n-5] + 656100*a[n-4] - 131220*a[n-3] + 36825*a[n-2] - 8352*a[n-1]))];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2023, after Robert Israel *)

Formula

a(n) is asymptotic to c*sqrt(n)*(27/4)^n with c=2.4... - Benoit Cloitre, Jan 26 2003, c = 81*sqrt(3/Pi)/32 = 2.4735502165085321... - Vaclav Kotesovec, Feb 07 2019
G.f.: F(G^(-1)(x)) where F = 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3) and G = t*(t-1)^2. - Mark van Hoeij, Oct 30 2011
D-finite with recurrence (531441*n^2 + 1594323*n + 1180980)*a(n) + (-196830*n^2 - 747954*n - 656100)*a(n + 1) + (24057*n^2 + 120285*n + 131220)*a(n + 2) + (-1809*n^2 - 16362*n - 36825)*a(n + 3) + (232*n^2 + 2798*n + 8352)*a(n + 4) + (-16*n^2 - 200*n - 624)*a(n + 5) = 0. - Robert Israel, Jun 20 2019

A361961 Total semiperimeter of 3-Fuss-Catalan polyominoes of length 3n.

Original entry on oeis.org

2, 18, 150, 1275, 11033, 96768, 857440, 7658001, 68827440, 621769016, 5640718746, 51355222113, 468976190634, 4293892636600, 39403880112240, 362321464909965, 3337465898598408, 30791007409655928, 284475382593582680, 2631594710532743340, 24372218297220901965, 225958143637966827240
Offset: 1

Views

Author

R. J. Mathar, Mar 31 2023

Keywords

Crossrefs

Cf. A024482 (1-Fuss-Catalan), A078999 (total area), A361960 (2-Fuss-Catalan).

Programs

  • Maple
    Per := proc(s,p,n)
        local i,j,a ;
        a := 0 ;
        for i from 0 to n-1 do
        for j from 0 to n-1-i do
            a := a+ (-1)^j*p^(n+1+i+(s+1)*j) *binomial(n-1+i,i)*binomial(n,j)*binomial(n+s*j,n-1-i-j)/(1-p)^(i+j) ;
        end do:
        end do:
        expand(a/n) ;
        factor(%) ;
    end proc:
    Per1std := proc(s,n)
        local p;
        Per(s,p,n) ;
        diff(%,p) ;
        factor(%) ;
        subs(p=1,%) ;
    end proc:
    seq(Per1std(3,n),n=1..30) ;

Formula

Conjecture: D-finite with recurrence 3*n*(396221*n -410120) *(3*n-1) *(3*n+1) *a(n) +4*(-86981513*n^4 +457143117*n^3 -996839467*n^2 +906061905*n -279161658) *a(n-1) +32*(2*n-5) *(4*n-9) *(4*n-7) *(2282347*n -1795413)*a(n-2)=0.
Showing 1-2 of 2 results.