cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dan Drake

Dan Drake's wiki page.

Dan Drake has authored 3 sequences.

A137443 First n-digit prime in consecutive digits of e.

Original entry on oeis.org

7, 71, 281, 4523, 74713, 904523, 6028747, 72407663, 360287471, 7427466391, 75724709369, 749669676277, 8284590452353, 99959574966967, 724709369995957, 2470936999595749, 28459045235360287, 571382178525166427
Offset: 1

Author

Dan Drake, Apr 18 2008

Keywords

Comments

If the "2" at the beginning of e is included, the only values for n <= 1000 that change are a(1) = 2, a(3) = 271 and a(85) = 2718281828459045235360287471352662497757247093699959574966967627724076630353547594571.
For another version starting with 2 see A095935. - Omar E. Pol, Oct 24 2011

Examples

			7427466391 is the first 10-digit prime found in consecutive digits of e, so a(10) = 7427466391.
		

Crossrefs

Cf. A095926.
Cf. A001113, A095935. - Omar E. Pol, Oct 24 2011

Programs

  • Sage
    def a(digits):
        bits = 0
        pos = 0
        while True:
            bits += (digits * 4) + 50
            decimals = RealField(bits, rnd='RNDZ')(exp(1)).frac().str()[2:]
            for s in range(pos, len(decimals) - digits + 1):
                if decimals[s] != '0':
                    i = Integer(decimals[s:s+digits])
                    if i.is_prime():
                        return i
            pos = len(decimals) - digits + 1

A130760 Noncrossing set partition version of A102356.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 30, 105, 280, 756, 2520, 6930, 18480, 60060, 180180, 675675, 2162160, 6806800, 24504480, 77597520, 232792560, 888844320, 3259095840, 10708457760, 37479602160, 133855722000, 435031096500, 1445641797600, 5059746291600, 17468171721000, 58227239070000
Offset: 0

Author

Dan Drake, Jul 13 2007

Keywords

Examples

			a(7) = 105 because there are 105 noncrossing set partitions of {1,2,3,4,5,6,7} of type {3,2,1,1} and all other integer partitions of 7 produce fewer noncrossing set partitions.
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4, section 7.2.1.5, problem 65.

Crossrefs

Cf. A102356.

Programs

  • Mathematica
    <Vaclav Kotesovec, Oct 23 2014 *)

Extensions

More terms from Vaclav Kotesovec, Oct 23 2014

A102356 Problem 66 in Knuth's Art of Computer Programming, vol. 4, section 7.2.1.5 asks which integer partition of n produces the most set partitions. The n-th term of this sequence is the number of set partitions produced by that integer partition.

Original entry on oeis.org

1, 1, 1, 3, 6, 15, 60, 210, 840, 3780, 12600, 69300, 415800, 2702700, 12612600, 94594500, 756756000, 4288284000, 38594556000, 244432188000, 1833241410000, 17110253160000, 141159588570000, 1298668214844000, 10389345718752000, 108222351237000000, 1125512452864800000
Offset: 0

Author

Dan Drake, Feb 21 2005

Keywords

Comments

a(n) is the maximum value in row n of A080575.

Examples

			a(4) = 6 because there are 6 set partitions of type {2,1,1}, namely 12/3/4, 13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34; all other integer partitions of 4 produce fewer set partitions.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           max(seq(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i))))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 13 2012
  • Mathematica
    sp[l_] := (Total[l])!/(Apply[Times, Map[ #! &, l]]*Apply[Times, Map[Count[l, # ]! &, Range[Max[l]]]]) a[n_] := Max[Map[sp, Partitions[n]]]
    b[0, ] = 1; b[, ?NonPositive] = 0; b[n, i_] := b[n, i] = Max[Table[ b[n - i*j, i-1]*n!/i!^j/(n - i*j)!/j!, {j, 0, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Oct 13 2011.
Typo in definition corrected by Klaus Leeb, Apr 30 2014.