cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342980 Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 01 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, columns k without the initial zero term is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,   0;
  0, 1,   1,    0;
  0, 1,   8,    1,     0;
  0, 1,  20,   20,     1,     0;
  0, 1,  38,  131,    38,     1,    0;
  0, 1,  63,  469,   469,    63,    1,   0;
  0, 1,  96, 1262,  3008,  1262,   96,   1, 0;
  0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
  ...
		

Crossrefs

Columns (and diagonals) are A006416, A006417, A006418.
Row sums are A099553(n+1).

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n,y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) = 1 + x*B(x,y) and B(x,y) is the g.f. of A082680.

A167630 Riordan array (1/(1-x),xm(x)) where m(x) is the g.f. of Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 17, 20, 13, 5, 1, 1, 38, 50, 38, 19, 6, 1, 1, 89, 126, 107, 63, 26, 7, 1, 1, 216, 322, 296, 196, 96, 34, 8, 1, 1, 539, 834, 814, 588, 326, 138, 43, 9, 1, 1, 1374, 2187, 2236, 1728, 1052, 507, 190, 53, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 07 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  3,  1;
  1,  8,  8,  4,  1;
  1, 17, 20, 13,  5, 1;
  1, 38, 50, 38, 19, 6, 1;
  ...
		

Crossrefs

Antidiagonal sums give A082395.
Row sums give A383527.
Diagonals include: A006416, A034856, A086615, A140662.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k=0, 1,
          `if`(k>n, 0, T(n-1, k-1)+T(n-1, k)+T(n-1, k+1)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Apr 20 2018
  • Mathematica
    T[, 0] = T[n, n_] = 1;
    T[n_, k_] /; 0, ] = 0;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2019 *)

Formula

T(n,0)=1, T(0,k)=0 for k>0, T(n,k)=0 if k>n, T(n,k)=T(n-1,k-1)+T(n-1,k)+T(n-1,k+1).
Sum_{k=0..n} k * T(n,k) = A003462(n). - Alois P. Heinz, Apr 20 2018
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = A082397(n-2) for n>=2. - Alois P. Heinz, May 02 2025

A027378 Expansion of (1+x^2-x^3)/(1-x)^4.

Original entry on oeis.org

1, 4, 11, 23, 41, 66, 99, 141, 193, 256, 331, 419, 521, 638, 771, 921, 1089, 1276, 1483, 1711, 1961, 2234, 2531, 2853, 3201, 3576, 3979, 4411, 4873, 5366, 5891, 6449, 7041, 7668, 8331, 9031, 9769, 10546
Offset: 0

Views

Author

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n>=4, a(n-4) is the number of (n-3)-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007

Crossrefs

Appears to be first differences of A252814.
First differences at A027379 (omitting first term).

Programs

  • Magma
    [(n^3 +9*n^2 +8*n +6)/6: n in [0..50]]; // G. C. Greubel, Jul 30 2022
    
  • Mathematica
    CoefficientList[Series[(1+x^2-x^3)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,11,23},50] (* Harvey P. Dale, May 17 2021 *)
  • SageMath
    [(n^3 +9*n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Jul 30 2022

Formula

a(n) = binomial(n+4, 3) - 3*(n+1). - Milan Janjic, Dec 28 2007 [Correction by Mathew Englander, Feb 03 2022]
a(n) = A006503(n) + 1 = A034857(n) + 5 = A116721(n+2) - 1 = A006416(n+1) + 3. - Mathew Englander, Feb 03 2022
E.g.f.: (1/6)*(6 + 18*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 30 2022
Showing 1-3 of 3 results.