cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A289768 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 13, 13, 17, 17, 59, 59, 81, 81, 219, 219, 257, 257, 899, 899, 1349, 1349, 3437, 3437, 4353, 4353, 15235, 15235, 20805, 20805, 56173, 56173, 65537, 65537, 229379, 229379, 344069, 344069, 876557, 876557, 1118225, 1118225, 3913787, 3913787
Offset: 0

Views

Author

Robert Price, Jul 12 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 598; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

a(n) = Sum_{k=0..n} 2^k*(A167630(floor(n/2), k) mod 2). - Mélika Tebni, May 20 2025

A383527 Partial sums of A005773.

Original entry on oeis.org

1, 2, 4, 9, 22, 57, 153, 420, 1170, 3293, 9339, 26642, 76363, 219728, 634312, 1836229, 5328346, 15494125, 45137995, 131712826, 384900937, 1126265986, 3299509114, 9676690939, 28407473191, 83470059532, 245465090758, 722406781935, 2127562036990, 6270020029353
Offset: 0

Views

Author

Mélika Tebni, Apr 29 2025

Keywords

Comments

For p prime of the form 4*k+3 (A002145), a(p) == 0 (mod p).
For p Pythagorean prime (A002144), a(p) - 2 == 0 (mod p).
a(n) (mod 2) = A010059(n).
a(A000069(n+1)) is even.
a(A001969(n+1)) is odd.

Crossrefs

Programs

  • Maple
    gf := (1 + sqrt((1 + x) / (1 - 3*x))) / (2*(1 - x)):
    a := n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n = 0 .. 29);
    # Recurrence:
    a:= proc(n) option remember; `if`(n<=2, 2^n, 3*a(n-1) - (6/n-1)*a(n-2) + (6/n-3)*a(n-3)) end:
    seq(a(n), n = 0 .. 29);
  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n] == 3*a[n-1] - (6-n)*a[n-2]/n + 3*(2-n)*a[n-3]/n, a[0] == 1, a[1] == 2, a[2] == 4}, a, {n, 0, 30}]] (* Paolo Xausa, May 05 2025 *)
  • Python
    from math import comb as C
    def a(n):
      return sum(C(n, k)*abs(sum((-1)**j*C(k, j) for j in range(k//2 + 1))) for k in range(n + 1))
    print([a(n) for n in range(30)])

Formula

First differences of A211278.
a(n) = Sum_{k=0..n} A167630(n, k).
Binomial transform of A210736 (see Python program).
G.f.: (1 + sqrt((1 + x) / (1 - 3*x))) / (2*(1 - x)).
E.g.f.: (Integral_{x=-oo..oo} BesselI(0,2*x) dx + (1 + BesselI(0,2*x)) / 2)*exp(x).
Recurrence: n*a(n) = 3*n*a(n-1) - (6-n)*a(n-2) + 3*(2-n)*a(n-3). If n <= 2, a(n) = 2^n.
a(n) ~ 3^(n + 1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, May 02 2025
From Mélika Tebni, May 09 2025: (Start)
a(n) = A257520(n) + A097893(n-1) for n > 0.
a(n) = Sum_{j=0..n}(Sum_{k=0..j} A122896(j, k)).
a(n+2) - 3*a(n+1) + 2*a(n) = A005774(n).
a(n+2) - 4*a(n+1) + 4*a(n) - a(n-1) = A005775(n) for n >= 3. (End)

A383609 Triangle read by rows: T(n,k) = T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) for 0 < k < n, T(n,0) = T(n,n) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 8, 1, 1, 5, 13, 20, 17, 1, 1, 6, 19, 38, 50, 38, 1, 1, 7, 26, 63, 107, 126, 89, 1, 1, 8, 34, 96, 196, 296, 322, 216, 1, 1, 9, 43, 138, 326, 588, 814, 834, 539, 1, 1, 10, 53, 190, 507, 1052, 1728, 2236, 2187, 1374, 1
Offset: 0

Views

Author

Mélika Tebni, May 02 2025

Keywords

Examples

			Triangle T(n, k) starts:
n\k :     0       1       2        3        4       5       6       7
 ====================================================================
  0 :     1
  1 :     1       1
  2 :     1       2       1
  3 :     1       3       4        1
  4 :     1       4       8        8        1
  5 :     1       5      13       20       17       1
  6 :     1       6      19       38       50      38       1
  7 :     1       7      26       63      107     126      89      1
  ...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) option remember; if k = n or k = 0 then 1 elif k < 0 then 0 else T(n-1, k-2)+T(n-1, k-1)+T(n-1, k) end if end proc:
    seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 8);

Formula

Sum_{k=0..n} 2^(n-k)*(T(n, k)(mod 2)) = A038185(n).
Sum_{j=0..n}(Sum_{k=0..j} T(j, k)) = A211278(n).
T(n,k) = A167630(n,n-k).

A167655 Riordan array (1-u,u) where u=x/(1+x+x^2).

Original entry on oeis.org

1, -1, 1, 1, -2, 1, 0, 2, -3, 1, -1, 0, 4, -4, 1, 1, -3, -1, 7, -5, 1, 0, 4, -6, -4, 11, -6, 1, -1, -1, 11, -9, -10, 16, -7, 1, 1, -4, -6, 24, -10, -20, 22, -8, 1, 0, 6, -9, -21, 44, -6, -35, 29, -9, 1, -1, -2, 21, -12, -55, 70, 7, -56, 37, -10, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2009

Keywords

Comments

Inverse of Riordan array A167630. Row sums : A000007.

Examples

			Triangle begins:
1;
-1, 1;
1, -2, 1;
0, 2, -3, 1;
-1, 0, 4, -4, 1;
1, -3, -1, 7, -5, 1;
0, 4, -6, -4, 11, -6, 1;
-1, -1, 11, -9, -10, 16, -7, 1;
1, -4, -6, 24, -10, -20, 22, -8, 1;
0, 6, -9, -21, 44, -6, -35, 29, -9, 1;
-1, -2, 21, -12, -55, 70, 7, -56, 37, -10, 1;
... _Philippe Deléham_, Jan 22 2014
		

Crossrefs

Formula

T(n,k) = T(n-1,k-1) - T(n-1,k) - T(n-2,k), T(0,0) = T(1,1) = T(2,0) = T(2,2) = 1, T(1,0) = -1, T(2,1) = -2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 22 2014
Showing 1-4 of 4 results.