A342980
Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 8, 1, 0;
0, 1, 20, 20, 1, 0;
0, 1, 38, 131, 38, 1, 0;
0, 1, 63, 469, 469, 63, 1, 0;
0, 1, 96, 1262, 3008, 1262, 96, 1, 0;
0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
...
-
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
\\ here G(n,y) gives A082680 as g.f.
G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A318101
Number of rooted 2-connected 4-regular planar maps, which may have loops, with n inner faces.
Original entry on oeis.org
2, 9, 30, 154, 986, 6977, 52590, 415678, 3409032, 28787498, 248930292, 2195238596, 19682012382, 178974809121, 1647460326046, 15327261314934, 143942130406288, 1363094805806462, 13004498819335396, 124900418475706476, 1206861624598185332, 11725558427958257690, 114494070652568918380
Offset: 2
A(x) = 2*x^2 + 9*x^3 + 30*x^4 + 154*x^5 + 986*x^6 + 6977*x^7 + 52590*x^8 + ...
-
F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x));
G = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2;
Z(N) = {
my(z0=1+O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1);
z0;
};
seq(N) = Vec((1 + 2*x)*subst(F, 'z, Z(N+2)));
seq(23)
\\ test: y=Ser(seq(303))*x^2; 0 == 8*y^4 + 4*(2*x + 1)*(2*x + 3)*y^3 - (x - 6)*(2*x + 1)^2*y^2 + (2*x + 1)^3*(18*x^2 - 16*x + 1)*y + x^2*(2*x + 1)^4*(27*x - 2)
A318102
Number of rooted 2-connected 4-regular maps on the projective plane, which may have loops, with n inner faces.
Original entry on oeis.org
5, 38, 199, 1466, 12365, 109700, 1003929, 9404402, 89690920, 867506788, 8486154214, 83790178300, 833805753167, 8352569222312, 84150924820499, 852039732062530, 8664839058268872, 88459350543053228, 906208005777385526, 9312350891307447116, 95963703215086597466, 991421114632619679480
Offset: 1
A(x) = 5*x + 38*x^2 + 199*x^3 + 1466*x^4 + 12365*x^5 + 109700*x^6 + ...
-
F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x));
G = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2;
Z(N) = {
my(z0=1+O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1);
z0;
};
f(N) = subst((z + 2*z*F - 1)/(2*z^2*x), 'z, Z(N));
Fp2(N) = {
my(z=Z(N), f=f(N));
((1 - sqrt(1 - 4*z^2*x*f))/(x*z) + z*(z-3)/2 * f^2 + 2*(f - 1))/(2*f - 1);
};
Fp4(N) = (1 + 2*x)*(Fp2(N) - 1) + 3*subst(F, 'z, Z(N+2));
seq(N) = Vec(Fp4(N+1));
seq(22)
/* test:
system("wget https://oeis.org/A318102/a318102.txt");
apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
s=intformal(s);
sum(n=0, poldegree(p, 'Dx), s=s'; polcoeff(p, n, 'Dx) * s);
};
0 == apply_diffop(read("a318102.txt"), Fp4(1001))
*/
A318103
Number of rooted 2-connected loopless 4-regular maps on the projective plane with n inner faces.
Original entry on oeis.org
6, 21, 138, 781, 4836, 30099, 191698, 1236024, 8063492, 53086930, 352249244, 2352800079, 15805224904, 106702428453, 723509453442, 4924851788720, 33638721268140, 230477992427450, 1583550831926508, 10907729315809642, 75307599054762424, 521026923863915206, 3611800088179535100
Offset: 2
A(x) = 6*x^2 + 21*x^3 + 138*x^4 + 781*x^5 + 4836*x^6 + 30099*x^7 + ...
-
F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z);
G = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2;
Z(N) = {
my(z0=1+O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1);
z0;
};
f(N) = subst((z - 1 + 2*z*x + 2*z*F)/(2*x*z^2), 'z, Z(N));
Fp4(N) = {
my(z=Z(N), f=f(N));
((1 - sqrt(1- 4*x*z^2*f))/(x*z) - z*f - x*(z*f)^3*(2 - f))/(2*f - 1) - 1;
};
seq(N) = Vec(Fp4(N+2));
seq(23)
/* test:
system("wget https://oeis.org/A318103/a318103.txt");
apply_diffop(p, s) = {
s=intformal(s);
sum(n=0, poldegree(p, 'Dx), s=s'; polcoeff(p, n, 'Dx) * s);
};
0 == apply_diffop(read("a318103.txt"), Fp4(1001))
*/
A006398
Number of sensed planar maps with n edges and without loops or isthmuses.
Original entry on oeis.org
1, 0, 1, 2, 4, 8, 29, 92, 403, 1846, 9239, 48028, 259567
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A006399
Number of unsensed planar maps with n edges and without loops or isthmuses.
Original entry on oeis.org
1, 0, 1, 2, 4, 8, 27, 76, 295, 1188, 5462, 26580, 138110
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Showing 1-6 of 6 results.
Comments