cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005568 Product of two successive Catalan numbers C(n)*C(n+1).

Original entry on oeis.org

1, 2, 10, 70, 588, 5544, 56628, 613470, 6952660, 81662152, 987369656, 12228193432, 154532114800, 1986841476000, 25928281261800, 342787130211150, 4583937702039300, 61923368957373000, 844113292629453000, 11600528392993339800, 160599522947154548400, 2238236829690383152800
Offset: 0

Views

Author

Keywords

Comments

Also equal to the number of standard tableaux of 2n cells with height less than or equal to 4. A005817(2n) - Mike Zabrocki, Feb 22 2007
Also equal to Sum binomial(2n,2i)*C(i)*C(n-i) = (4/Pi^2) Integral_{y=0..Pi} Integral_{x=0..Pi} (2*cos(x)+2*cos(y))^(2n)*sin^2(x)*sin^2(y) dx dy, since this counts walks of 2n steps in the nonnegative quadrant of an integer lattice that return to the origin (cf. R. K. Guy link below). - Andrew V. Sutherland, Nov 29 2007
Also, number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, 0), (-1, 1), (1, -1), (1, 0)}. - Manuel Kauers, Nov 18 2008 - Manuel Kauers, Nov 18 2008
Also, number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, 0), (0, -1), (0, 1), (1, 0)}. - Manuel Kauers, Nov 18 2008
a(2n-2) is also the sum of the numbers of standard Young tableaux of size 2n of (2,2) rectangular hook shapes (k+2,k+2,2^{n-2-k}, 0 <= k <= n-2. - Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010
Also, number of tree-rooted planar maps with n edges. - Noam Zeilberger, Aug 18 2017

References

  • M. Lothaire, Applied Combinatorics on Words, Cambridge, 2005. See Prop. 9.1.9, p. 452. [From N. J. A. Sloane, Apr 03 2012]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..21],n->Binomial(2*n,n)*Binomial(2*(n+1),n+1)/((n+1)*(n+2))); # Muniru A Asiru, Dec 13 2018
    
  • Magma
    [Catalan(n)*Catalan(n+1): n in [0..21]]; // Vincenzo Librandi, Feb 06 2020
  • Maple
    A000108:=n->binomial(2*n,n)/(n+1):
    seq(A000108(n)*A000108(n+1),n=0..21); # Emeric Deutsch, Mar 05 2007
  • Mathematica
    f[n_] := CatalanNumber[n] CatalanNumber[n + 1] (* Or *) (4n + 2) Binomial[2 n, n]^2/(n^3 + 4n^2 +5n + 2) (* Or *) (2 n)! (2 + 2 n)!/(n! ((1 + n)!)^2 (2 + n)!); Array[f, 22, 0] (* Robert G. Wilson v *)
    Times@@@Partition[CatalanNumber[Range[0,30]],2,1] (* Harvey P. Dale, Jul 23 2012 *)
  • PARI
    (alias(C,binomial));a(n)=(C(2*n,n)-C(2*n,n-1))*(C(2*n+2,n+1)-C(2*n+2,n)) /* Michael Somos, Jun 22 2005 */
    
  • Sage
    [catalan_number(i)*catalan_number(i+1) for i in range(0,22)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = binomial(2*n,n)*binomial(2*n+2,n+1)/((n+1)(n+2)).
a(n) = 2*(2*n+1)*binomial(2*n,n)^2/((n+2)(n+1)^2).
D-finite with recurrence (n+2)*(n+1)*a(n) = 4*(2*n-1)*(2*n+1)*a(n-1). - Corrected R. J. Mathar, Feb 05 2020
G.f. in Maple notation: (1/2)/x+1/768/(x^2*Pi)*((32-512*x)*EllipticK(4*x^(1/2))+(-32-512*x)*EllipticE(4*x^(1/2))). - Karol A. Penson, Oct 24 2003
G.f.: 3F2( (1, 1/2, 3/2); (2, 3))(16*x) = (1 - 2F1((-1/2, 1/2); (2))( 16*x))/(2*x). - Olivier Gérard Feb 16 2011
G.f.: (1/(6*x))*(3+(16*x-1)*(2*hypergeom([1/2, 1/2],[1],16*x) + (16*x+1)*hypergeom([3/2, 3/2],[2],16*x))). - Mark van Hoeij, Nov 02 2009
G.f.: (1-hypergeom([-1/2,1/2],[2],16*x))/(2*x). - Mark van Hoeij, Aug 14 2014
E.g.f.: (1/3)*(8*x^2*BesselI(0, 2*x)^2 - 4*BesselI(0, 2*x)*BesselI(1, 2*x)*x - BesselI(1, 2*x)^2 - 8*BesselI(1, 2*x)^2*x^2)/x. - Vladeta Jovovic, Dec 29 2003
E.g.f. Sum_{n>=0} a(n)*x^(2n)/(2n)! = BesselI(1, 2x)^2/x^2. - Michael Somos, Jun 22 2005
From Paul D. Hanna, Nov 26 2009: (Start)
G.f.: A(x) = [(1/x)*Series_Reversion(x/F(x)^2)]^(1/2) where F(x) = g.f. of A004304, where A004304(n) is the number of nonseparable planar tree-rooted maps with n edges.
G.f.: A(x) = F(x*A(x)^2) where A(x/F(x)^2) = F(x) where F(x) = g.f. of A004304.
G.f.: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) where G(x) = g.f. of A168450.
G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)) where G(x) = g.f. of A168450.
Self-convolution yields A168452.
(End)
Representation of a(n) as the n-th power moment of a positive function on the segment [0,16]; in Mathematica notation, a(n) = NIntegrate[x^n*(8 ((1+x/16)*EllipticE[1-x/16]-1/8*x*EllipticK[1-x/16]))/(3*(Pi^2)*Sqrt[x]),{x,0,16}]. This solution of the Hausdorff power moment problem is unique. - Karol A. Penson, Oct 05 2011
G.f. y=A(x) satisfies: 0 = x^2*(16*x-1)*y''' + 6*x*(16*x-1)*y'' + 6*(18*x-1)*y' + 12*y. - Gheorghe Coserea, Jun 14 2018
Sum_{n>=0} a(n)/4^(2*n+1) = 2 - 16/(3*Pi). - Amiram Eldar, Apr 02 2022

Extensions

More terms from Emeric Deutsch, Feb 20 2004
More terms from Manuel Kauers, Nov 18 2008
Two hypergeometric g.f.s, van Hoeij's formula checked and formula field edited by Olivier Gérard, Feb 16 2011

A004304 Number of nonseparable planar tree-rooted maps with n edges.

Original entry on oeis.org

1, 2, 2, 6, 28, 160, 1036, 7294, 54548, 426960, 3463304, 28910816, 247104976, 2154192248, 19097610480, 171769942086, 1564484503044, 14407366963440, 133978878618904, 1256799271555872, 11881860129979440
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000264.

Programs

  • Maple
    A004304 := proc(n) local N,x,ode ; Order := n+1 ; ode := x^2*diff(N(x),x,x)*(N(x)^3-16*x*N(x)) ; ode := ode + (x*diff(N(x),x))^3*(16-6*N(x)) ; ode := ode + (x*diff(N(x),x))^2*(12*N(x)^2-16*x-24*N(x)) ; ode := ode + x*diff(N(x),x)*(-8*N(x)^3+24*x*N(x)+12*N(x)^2) ; ode := ode + 2*N(x)^2*(N(x)^2-N(x)-6*x) ; dsolve({ode=0,N(0)=1,D(N)(0)=2},N(x),type=series) ; convert(%,polynom) ; rhs(%) ; RETURN( coeftayl(%,x=0,n)) ; end; for n from 0 to 20 do printf("%d,",A004304(n)) ; od ; # R. J. Mathar, Aug 18 2006
  • Mathematica
    m = 22;
    F[x_] = Sum[2 (2n+1) Binomial[2n, n]^2 x^n/((n+2)(n+1)^2), {n, 0, m}];
    A[x_] = (x/InverseSeries[x F[x]^2 + O[x]^m, x])^(1/2);
    CoefficientList[A[x], x] (* Jean-François Alcover, Mar 28 2020 *)
  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2)^2))^(1/2),n)} \\ Paul D. Hanna, Nov 26 2009
    
  • PARI
    seq(N) = {
      my(c(n)=binomial(2*n,n)/(n+1), s=Ser(apply(n->c(n)*c(n+1), [0..N])));
      Vec(subst(s, 'x, serreverse('x*s^2)));
    };
    seq(20)
    \\ test: y=Ser(seq(200)); 0 == x^2*y''*(y^3 - 16*x*y) + (x*y')^3*(16-6*y) + (x*y')^2*(12*y^2-16*x-24*y) + x*y'*(-8*y^3 + 24*x*y + 12*y^2) + 2*y^2*(y^2-y-6*x)
    \\ Gheorghe Coserea, Jun 13 2018

Formula

From Paul D. Hanna, Nov 26 2009: (Start)
G.f.: A(x) = [x/Series_Reversion(x*F(x)^2)]^(1/2) where F(x) = g.f. of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).
G.f.: A(x) = F(x/A(x)^2) where A(x*F(x)^2) = F(x) where F(x) = g.f. of A005568.
G.f.: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) where F(x) = g.f. of A168450.
G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = g.f. of A168450.
Self-convolution yields A168451.
(End)

Extensions

More terms from R. J. Mathar, Aug 18 2006

A168452 Self-convolution of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).

Original entry on oeis.org

1, 4, 24, 180, 1556, 14840, 152092, 1646652, 18613664, 217852008, 2623657384, 32361812912, 407342311632, 5217211974832, 67836910362772, 893766246630572, 11913422912188432, 160450066324972472, 2181014117345997704, 29894260817385950064, 412839378639052110464
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 +...
A(x)^(1/2) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A005568(n)*x^n +...
A(x) satisfies: A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A004304:
G(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
G(x)^2 = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...+ A168451(n)*x^n +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 4, 24][n+1],
          (12*n*(n+1)*(16*n^4+68*n^3+44*n^2-63*n-25) *a(n-1)
           -(3072*n^6+768*n^5-8448*n^4+1152*n^3+3264*n^2-288) *a(n-2)
           +1024*n*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(4*n+1) *a(n-3)) /
          ((n+1)^2*(n+2)*(n+3)*(n+4)*(4*n-3)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 20 2013
  • Mathematica
    c[n_] := CatalanNumber[n]*CatalanNumber[n+1]; a[n_] := ListConvolve[cc = Array[c, n+1, 0], cc][[1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 22 2017 *)
  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff(Ser(C_2)^2,n)}

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)^2) where G(x) = g.f. of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.
G.f.: A(x) = G(x*A(x))^2 where A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A004304.
a(n) ~ c * 16^n / n^3, where c = 3.07968404... . - Vaclav Kotesovec, Sep 12 2014
Conjecture D-finite with recurrence 3*(n+4)*(n+3)*(n+2)*(n+1)^2*a(n) -4*n*(n+1) *(32*n^3+164*n^2+233*n+75)*a(n-1) +96*(16*n^5+24*n^4-14*n^3-28*n^2-16*n+3) *a(n-2) +1536*(-8*n^4+22*n^3-32*n+15)*a(n-3) -16384*(2*n-5)*(n-1)*(n-2)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Nov 22 2024

Extensions

Typo in formula corrected by Paul D. Hanna, Nov 28 2009

A172391 G.f. satisfies: A(x) = G(x/A(x))^2 and G(x)^2 = A(x*G(x)^2) where G(x) = Sum_{n>=0} C(2*n,n)*C(2*n+2,n+1)/(n+2)*x^n is the g.f. of A172392.

Original entry on oeis.org

1, 8, 12, 0, 28, 0, 264, 0, 3720, 0, 63840, 0, 1232432, 0, 25731216, 0, 568130552, 0, 13081215840, 0, 311178567648, 0, 7597974517056, 0, 189518147463232, 0, 4811962763222784, 0, 124028853694440640, 0, 3238304402221646880, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2010

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 12*x^2 + 28*x^4 + 264*x^6 + 3720*x^8 +...
where A(x) = G(x/A(x))^2 where G(x) is the g.f. of A172392:
G(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2940*x^4 + 33264*x^5 +...+ A172392(n)*x^n +...
G(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=sum(m=0,n,binomial(2*m,m)*binomial(2*m+2,m+1)/(m+2)*x^m)+x*O(x^n));polcoeff(x/serreverse(x*G^2),n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*G(x)^2) where G(x) is the g.f. of A172392(n) = A000108(n+1)*A000984(n).
Self-convolution of A172393.
Showing 1-4 of 4 results.