cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Manuel Kauers

Manuel Kauers's wiki page.

Manuel Kauers has authored 3508 sequences. Here are the ten most recent ones:

A181750 The number of paths of a chess rook in a 5D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 120, 291720, 1085674320, 4927561419120, 25071989721176760, 137401053406474591320, 793279085081986319145120, 4760210822189950253433759120, 29426738284267047709626231969120, 186257720453050086737999575854359760, 1201788369927033696254110199515917069120
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 120 because there are 120 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=5 of A181731.

A181751 The number of paths of a chess rook in a 6D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 720, 19445040, 906140159280, 54259623434853360, 3751591832963936408880, 284751719071722748492598160, 23074162542675887567516737575120, 1962510523766609850302634846653001840, 173256558851090756974435967247639154062480
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 720 because there are 720 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=6 of A181731.

A181752 The number of paths of a chess rook in a 7D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 5040, 1781750880, 1224777388630320, 1139907455908263095760, 1261774625300967410997361200, 1562711749309729990152410055981840, 2093930745462011336917616846237237197680, 2973970378870521024883907518445574302750687520
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 5040 because there are 5040 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=7 of A181731.

A181749 The number of paths of a chess rook in a 4D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 24, 6384, 2306904, 964948464, 439331916888, 211383647188320, 105734905550405400, 54434276297806242480, 28652982232251791825880, 15350736081585866511795024, 8343014042738696079671066904, 4588687856038215036178166258304
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 24 because there are 24 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=4 of A181731.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 24, 6384, 2306904][n+1],
          ((44148546*n^7-417566955*n^6+1582366209*n^5-3082719955*n^4
          +3301523581*n^3-1923587242*n^2+559133416*n-61892160)*(n-1)^2*
          a(n-1) -2*(n-2)*(131501097*n^8-1572004161*n^7+7935973542*n^6
          -21971456652*n^5+36200366619*n^4-35926876063*n^3+20608609302*n^2
          -6086148644*n+688049040)*a(n-2) +(393838614*n^7-4640973051*n^6
          +22263043023*n^5-55659442951*n^4+77029268163*n^3
          -57647348158*n^2+20864000120*n-2733950400)*(n-3)^2*a(n-3)
          -5000*(34983*n^4-138138*n^3+184101*n^2-92498*n+14640)*(n-3)^2*
          (n-4)^3*a(n-4))/ (2*n^3*(464360-1015046*n+808413*n^2
          -278070*n^3+34983*n^4)*(n-1)^2))
        end:
    seq(a(n), n=0..20); # Alois P. Heinz, Aug 31 2014
  • Mathematica
    b[l_List] := b[l] = If[Union[l]~Complement~{0} == {}, 1, Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]];
    a[n_] := b[Array[n&, 4]];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz in A181731 *)

Formula

Recursion: see Maple program. - Alois P. Heinz, Aug 31 2014
a(n) ~ 8 * 5^(4*n-1) / (3*sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Sep 03 2014

A181724 The number of paths of a chess rook in a 8D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 40320, 214899027840, 2509137924026751360, 41795104403987233709518080, 852847938704373386478865686645120, 19846219244619878972245087341015659057280, 506348195597089273505079176351561351976609740160
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 40320 because there are 40320 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=8 of A181731.

A181725 The number of paths of a chess rook in a 9D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 362880, 33007837322880, 7408611474125625953280, 2499611266020127048565292881280, 1064141699563485513180737844317706666240, 526577363627345975232160422620146408876598167680, 289514065258843883748159731480148589989905149052842682880
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 362880 because there are 362880 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=9 of A181731.

A181726 The number of paths of a chess rook in a 10D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 3628800, 6290830003852800, 30306073546461323055916800, 231242270452155338291905203314956800, 2293197130058463838438742129627609575368940800, 26941822036577030394903099245279465611395585827577676800
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 3628800 because there are 3628800 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=10 of A181731.

A181727 The number of paths of a chess rook in a 11D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 39916800, 1456812592995513600, 166369951631853645510591187200, 31707078596527364069316526441204831526400, 8089435115221815003427192379950659547969112311680000, 2492107900477900258313589438717998843635090670139189341868499200
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 39916800 because there are 39916800 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=11 of A181731.

Extensions

a(6) from Alois P. Heinz, Jul 21 2012

A181728 The number of paths of a chess rook in a 12D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 479001600, 402910665227270323200, 1193980357099103775859825737292800, 6221349234739584150822122029143772173312614400, 44698730304001991182769831137859339764690493418024756096000, 395245742455869432937361185087176756463979731526578123254618890928614400
Offset: 0

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 479001600 because there are 479001600 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=12 of A181731.

Extensions

a(6) from Alois P. Heinz, Jul 21 2012

A181731 Table A(d,n) of the number of paths of a chess rook in a d-dimensional hypercube from (0...0) to (n...n) where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 6, 14, 4, 1, 24, 222, 106, 8, 1, 120, 6384, 9918, 838, 16, 1, 720, 291720, 2306904, 486924, 6802, 32, 1, 5040, 19445040, 1085674320, 964948464, 25267236, 56190, 64, 1, 40320, 1781750880, 906140159280, 4927561419120, 439331916888, 1359631776, 470010, 128, 1, 362880, 214899027840, 1224777388630320, 54259623434853360
Offset: 1

Author

Manuel Kauers, Nov 16 2010

Keywords

Comments

The table is enumerated along antidiagonals: A(1,0), A(2,0), A(1,1), A(3,0), A(2,1), A(1,2), A(4,0), A(3,1), A(2,2), A(1,3), ... .

Examples

			A(3,1) = 6 because there are 6 rook paths on 3D chessboards from (0,0,0) to (1,1,1).
Square table A(d,n) begins:
  1,   1,      2,          4,             8, ...
  1,   2,     14,        106,           838, ...
  1,   6,    222,       9918,        486924, ...
  1,  24,   6384,    2306904,     964948464, ...
  1, 120, 291720, 1085674320, 4927561419120, ...
		

Crossrefs

Rows d=1-12 give: A011782, A051708 (from [1,1]), A144045 (from [1,1,1]), A181749, A181750, A181751, A181752, A181724, A181725, A181726, A181727, A181728.
Columns n=0-2 give: A000012, A000142, A105749.
Main diagonal gives A246623.

Programs

  • Maple
    b:= proc(l) option remember; `if`({l[]} minus {0}={}, 1, add(add
           (b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..nops(l)))
        end:
    A:= (d, n)-> b([n$d]):
    seq(seq(A(h-n, n), n=0..h-1), h=1..10); # Alois P. Heinz, Jul 21 2012
  • Mathematica
    b[l_List] := b[l] = If[Union[l] ~Complement~ {0} == {}, 1, Sum[ Sum[ b[ Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; A[d_, n_] := b[Array[n&, d]]; Table[Table[A[h-n, n], {n, 0, h-1}], {h, 1, 10}] // Flatten (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Extensions

Edited by Alois P. Heinz, Jul 21 2012
Minor edits by Vaclav Kotesovec, Sep 03 2014