A105749
Number of ways to use the elements of {1,...,k}, 0 <= k <= 2n, once each to form a sequence of n sets, each having 1 or 2 elements.
Original entry on oeis.org
1, 2, 14, 222, 6384, 291720, 19445040, 1781750880, 214899027840, 33007837322880, 6290830003852800, 1456812592995513600, 402910665227270323200, 131173228963370155161600, 49656810289225281849907200, 21628258853895305337293568000, 10739534026001485514941587456000
Offset: 0
Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005
a(2) = 14 = |{ ({1},{2}), ({2},{1}), ({1},{2,3}), ({2,3},{1}), ({2},{1,3}), ({1,3},{2}), ({3},{1,2}), ({1,2},{3}), ({1,2},{3,4}), ({3,4},{1,2}), ({1,3},{2,4}), ({2,4},{1,3}), ({1,4},{2,3}), ({2,3},{1,4}) }|.
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Samuele Giraudo and Yannic Vargas, Operads of packed words, quotients, and monomial bases, Proc. 37th Conf. Formal Power Series Alg. Comb., Sém. Lotharingien Combin. (2025) Vol. 93B Art. No. 82. See p. 9.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Andrew Vince and Miklos Bona, The Number of Ways to Assemble a Graph, arXiv preprint arXiv:1204.3842 [math.CO], 2012.
- Index entries for related partition-counting sequences
Replace "sets" by "lists":
A099022.
-
[(&+[Binomial(n,j)*Factorial(n+j)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
-
a:= n-> add(binomial(n, k)*(n+k)!/2^k, k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2012
-
f[n_]:= Sum[Binomial[n,k]*(n+k)!/2^k, {k,0,n}]; Table[f[n], {n,0,20}]
-
[sum(binomial(n,j)*factorial(n+j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023
A051708
Number of ways to move a chess rook from the lower left corner to square (n,n), with the rook moving only up or right.
Original entry on oeis.org
1, 2, 14, 106, 838, 6802, 56190, 470010, 3968310, 33747490, 288654574, 2480593546, 21400729382, 185239360178, 1607913963614, 13991107041306, 122002082809110, 1065855419418690, 9327252391907790, 81744134786314410, 717367363052796678, 6303080714967178962
Offset: 1
Joe Keane (jgk(AT)jgk.org)
G.f. = x + 2*x^2 + 14*x^3 + 106*x^4 + 838*x^5 + 6802*x^6 + 56190*x^7 + ...
- Posting to newsgroup rec.puzzles, Dec 03 1999 by Nick Wedd (Nick(AT)maproom.co.uk).
- Muniru A Asiru, Table of n, a(n) for n = 1..1000 (first 325 terms from Alois P. Heinz)
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
- "flawr", (Programming Puzzles & Code Golf Stack Exchange user), Partitioning the grid into triangles
- E. Yu Jin and M. E. Nebel, A combinatorial proof of the recurrence for rook paths, Electronic J. Comb. 19 (2012) #P57.
- M. Kauers and D. Zeilberger, The Computational Challenge of Enumerating High-Dimensional Rook Walks, arXiv:1011.4671 [math.CO], 2010.
- Alexander R. Povolotsky, MathOverflow, Are two formulas related to A051708 equivalent?, 2025.
- Nick Webb, Thread in newsgroup rec.puzzles, Dec 03 1999. [Broken link]
Main diagonal of the square array given in
A035002.
First differences of (
A084771-1)/2.
-
a:=[1,2];; for n in [3..25] do a[n]:=((10*n-16)*a[n-1]-(9*n-27)*a[n-2])/(n-1); od; a; # Muniru A Asiru, Nov 30 2018
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( ((x*(1-x))/(Sqrt(1-10*x+9*x^2))+x)/2 )); // G. C. Greubel, Dec 01 2018
-
a:= proc(n) option remember;
`if`(n<3, n, ((10*n-16)*a(n-1)-(9*n-27)*a(n-2))/(n-1))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jul 21 2012
-
CoefficientList[Series[(9*x^2 - Sqrt[9*x^2-10*x+1]*x-x) / (2*(9*x-1)), {x,0,20}],x] // Rest (* Jean-François Alcover, Mar 30 2011, after g.f. given by Ralf Stephan *)
RecurrenceTable[{a[1]==1,a[2]==2,a[n]==((10n-16)a[n-1]-(9n-27)a[n-2])/ (n-1)},a,{n,30}] (* Harvey P. Dale, Sep 28 2013 *)
-
a(n):=sum(binomial(n-1,n-i)*sum(binomial(k+i,i)*binomial(n-1,n-k),k,0,n),i,0,n); /* Vladimir Kruchinin, Apr 20 2015 */
-
{a(n) = if( n<1, 0, n--; polcoeff( 1/2 + (1 - x) / (2 * sqrt( 1 - 10*x + 9*x^2 + x * O(x^n) ) ), n ) )} /* Michael Somos, Jan 08 2011 */
-
a(n) = n--; sum(i=0,n, binomial(n-1, n-i)*sum(k=0, n, binomial(k+i, i)*binomial(n-1, n-k))); \\ Michel Marcus, Apr 20 2015
A144045
Number of paths of a chess Rook in a cube, from (1,1,1) to (n,n,n), where the rook may move in steps that are multiples of (1,0,0), (0,0,1), or (0,0,1).
Original entry on oeis.org
1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, 4223303759148, 241144782230124, 13930829740017132, 812470444305924300, 47760356825349969600, 2826309951801018736800, 168207011284961649886800, 10060178088232285063542768, 604273284101165691102038556
Offset: 1
Martin J. Erickson (erickson(AT)truman.edu), Sep 08 2008
a(2)=6 because there are 6 Rook paths from (1,1,1) to (2,2,2).
G.f. = x + 6*x^2 + 222*x^3 + 9918*x^4 + 486924*x^5 + 25267236*x^6 + ...
A181728
The number of paths of a chess rook in a 12D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 479001600, 402910665227270323200, 1193980357099103775859825737292800, 6221349234739584150822122029143772173312614400, 44698730304001991182769831137859339764690493418024756096000, 395245742455869432937361185087176756463979731526578123254618890928614400
Offset: 0
a(1) = 479001600 because there are 479001600 rook paths from (0..0) to (1..1).
A181749
The number of paths of a chess rook in a 4D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 24, 6384, 2306904, 964948464, 439331916888, 211383647188320, 105734905550405400, 54434276297806242480, 28652982232251791825880, 15350736081585866511795024, 8343014042738696079671066904, 4588687856038215036178166258304
Offset: 0
a(1) = 24 because there are 24 rook paths from (0..0) to (1..1).
-
a:= proc(n) option remember; `if`(n<4, [1, 24, 6384, 2306904][n+1],
((44148546*n^7-417566955*n^6+1582366209*n^5-3082719955*n^4
+3301523581*n^3-1923587242*n^2+559133416*n-61892160)*(n-1)^2*
a(n-1) -2*(n-2)*(131501097*n^8-1572004161*n^7+7935973542*n^6
-21971456652*n^5+36200366619*n^4-35926876063*n^3+20608609302*n^2
-6086148644*n+688049040)*a(n-2) +(393838614*n^7-4640973051*n^6
+22263043023*n^5-55659442951*n^4+77029268163*n^3
-57647348158*n^2+20864000120*n-2733950400)*(n-3)^2*a(n-3)
-5000*(34983*n^4-138138*n^3+184101*n^2-92498*n+14640)*(n-3)^2*
(n-4)^3*a(n-4))/ (2*n^3*(464360-1015046*n+808413*n^2
-278070*n^3+34983*n^4)*(n-1)^2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 31 2014
-
b[l_List] := b[l] = If[Union[l]~Complement~{0} == {}, 1, Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]];
a[n_] := b[Array[n&, 4]];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz in A181731 *)
A181724
The number of paths of a chess rook in a 8D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 40320, 214899027840, 2509137924026751360, 41795104403987233709518080, 852847938704373386478865686645120, 19846219244619878972245087341015659057280, 506348195597089273505079176351561351976609740160
Offset: 0
a(1) = 40320 because there are 40320 rook paths from (0..0) to (1..1).
A181725
The number of paths of a chess rook in a 9D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 362880, 33007837322880, 7408611474125625953280, 2499611266020127048565292881280, 1064141699563485513180737844317706666240, 526577363627345975232160422620146408876598167680, 289514065258843883748159731480148589989905149052842682880
Offset: 0
a(1) = 362880 because there are 362880 rook paths from (0..0) to (1..1).
A181726
The number of paths of a chess rook in a 10D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 3628800, 6290830003852800, 30306073546461323055916800, 231242270452155338291905203314956800, 2293197130058463838438742129627609575368940800, 26941822036577030394903099245279465611395585827577676800
Offset: 0
a(1) = 3628800 because there are 3628800 rook paths from (0..0) to (1..1).
A181727
The number of paths of a chess rook in a 11D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 39916800, 1456812592995513600, 166369951631853645510591187200, 31707078596527364069316526441204831526400, 8089435115221815003427192379950659547969112311680000, 2492107900477900258313589438717998843635090670139189341868499200
Offset: 0
a(1) = 39916800 because there are 39916800 rook paths from (0..0) to (1..1).
A181750
The number of paths of a chess rook in a 5D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 120, 291720, 1085674320, 4927561419120, 25071989721176760, 137401053406474591320, 793279085081986319145120, 4760210822189950253433759120, 29426738284267047709626231969120, 186257720453050086737999575854359760, 1201788369927033696254110199515917069120
Offset: 0
a(1) = 120 because there are 120 rook paths from (0..0) to (1..1).
Showing 1-10 of 13 results.
Comments