cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A144905 a(0) = 1; thereafter a(n) = A105749(n)/n.

Original entry on oeis.org

1, 2, 7, 74, 1596, 58344, 3240840, 254535840, 26862378480, 3667537480320, 629083000385280, 132437508454137600, 33575888768939193600, 10090248381797704243200, 3546915020658948703564800, 1441883923593020355819571200, 671220876625092844683849216000, 354750674999711346878469083136000
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Feb 16 2009

Keywords

Crossrefs

Programs

  • Maple
    B := proc(n, k, M) local i; option remember;
    if n = k then 1;
    elif k < n then 0;
    elif n < 1 then 0;
    else
    add( binomial(k-1,i)*B(n-1,k-1-i,M),i=0..M-1 );
    end if;
    end proc;
    p:=proc(n,M) add(B(n,k,M),k=0..M*n); end;
    l:=proc(n,M) n!*p(n,M); end;
    [seq(l(n,2)/n,n=1..30)];

A001515 Bessel polynomial y_n(x) evaluated at x=1.

Original entry on oeis.org

1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0

Views

Author

Keywords

Comments

For some applications it is better to start this sequence with an extra 1 at the beginning: 1, 1, 2, 37, 266, 2431, 27007, 353522, 5329837, ... (again with offset 0). This sequence now has its own entry - see A144301.
Number of partitions of {1,...,k}, n <= k <= 2n, into n blocks with no more than 2 elements per block. Restated, number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n sets, each having 1 or 2 elements. - Bob Proctor, Apr 18 2005, Jun 26 2006. E.g., for n=2 we get: (k=2): {1,2}; (k=3): {1,23}, {2,13}, {3,12}; (k=4): {12,34}, {13,24}, {14,23}, for a total of a(2) = 7 partitions.
Equivalently, number of sequences of n unlabeled items such that each item occurs just once or twice (cf. A105749). - David Applegate, Dec 08 2008
Numerator of (n+1)-th convergent to 1+tanh(1). - Benoit Cloitre, Dec 20 2002
The following Maple lines show how this sequence and A144505, A144498, A001514, A144513, A144506, A144514, A144507, A144301 are related.
f0:=proc(n) local k; add((n+k)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f0(n),n=0..10)];
# that is this sequence
f1:=proc(n) local k; add((n+k+1)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f1(n),n=0..10)];
# that is A144498
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..10)];
# that is A144513; divided by 2 gives A001514
f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..10)];
# that is A144514; divided by 6 gives A144506
f4:=proc(n) local k; add((n+k+4)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f4(n),n=0..10)];
# that divided by 24 gives A144507
a(n) is also the numerator of the continued fraction sequence beginning with 2 followed by 3 and the remaining odd numbers: [2,3,5,7,9,11,13,...]. - Gil Broussard, Oct 07 2009
Also, number of scenarios in the Gift Exchange Game when a gift can be stolen at most once. - N. J. A. Sloane, Jan 25 2017

Examples

			The first few Bessel polynomials are (cf. A001497, A001498):
  y_0 = 1
  y_1 = 1 +   x
  y_2 = 1 + 3*x +  3*x^2
  y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A144301 for other formulas and comments.
Row sums of Bessel triangle A001497 as well as of A001498.
Partial sums: A105748.
First differences: A144498.
Replace "sets" with "lists" in comment: A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.

Programs

  • Haskell
    a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    [(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
    
  • Maple
    A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
    A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
    A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
    Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
    
  • SageMath
    [sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

The following formulas can all be found in (or are easily derived from formulas in) Grosswald's book.
D-finite with recurrence: a(0) = 1, a(1) = 2; thereafter a(n) = (2*n-1)*a(n-1) + a(n-2).
E.g.f.: exp(1-sqrt(1-2*x))/sqrt(1-2*x).
a(n) = Sum_{ k = 0..n } binomial(n+k,2*k)*(2*k)!/(k!*2^k).
Equivalently, a(n) = Sum_{ k = 0..n } (n+k)!/((n-k)!*k!*2^k) = Sum_{ k = n..2n } k!/((2n-k)!*(k-n)!*2^(k-n)).
a(n) = Hypergeometric2F0( [n+1, -n] ; - ; -1/2).
a(n) = A105749(n)/n!.
a(n) ~ exp(1)*(2n)!/(n!*2^n) as n -> oo. [See Grosswald, p. 124]
a(n) = A144301(n+1).
G.f.: 1/(1-x-x/(1-x-2*x/(1-x-3*x/(1-x-4*x/(1-x-5*x/(1-.... (continued fraction). - Paul Barry, Feb 08 2009
From Michael Somos, Apr 08 2012: (Start)
a(-1 - n) = a(n).
(a(n+1) + a(n+2))^2 = a(n)*a(n+2) + a(n+1)*a(n+3) for all integer n. (End)
G.f.: 1/G(0) where G(k) = 1 - x - x*(2*k+1)/(1 - x - 2*x*(k+1)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2012
E.g.f.: E(0)/(2*sqrt(1-2*x)), where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)*(1+sqrt(1-2*x))/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
G.f.: T(0)/(1-x), where T(k) = 1 - (k+1)*x/((k+1)*x - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2013
a(n) = (2*BesselI(1/2, 1)+BesselI(3/2, 1))*BesselK(n+1/2, 1). - Jean-François Alcover, Feb 03 2014
a(n) = exp(1)*sqrt(2/Pi)*BesselK(1/2+n,1). - Gerry Martens, Jul 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n) = (1/n!)*Integral_{x = 0..inf} exp(-x)*x^n*(1 + x/2)^n dx.
E.g.f.: d/dx( exp(x*c(x/2)) ) = 1 + 2*x + 7*x^2/2! + 37*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 2^n * hypergeometric1f1(-n; -2*n; 2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 2*t/(1-t)^2). (End)

Extensions

Extensively edited by N. J. A. Sloane, Dec 07 2008

A181731 Table A(d,n) of the number of paths of a chess rook in a d-dimensional hypercube from (0...0) to (n...n) where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 6, 14, 4, 1, 24, 222, 106, 8, 1, 120, 6384, 9918, 838, 16, 1, 720, 291720, 2306904, 486924, 6802, 32, 1, 5040, 19445040, 1085674320, 964948464, 25267236, 56190, 64, 1, 40320, 1781750880, 906140159280, 4927561419120, 439331916888, 1359631776, 470010, 128, 1, 362880, 214899027840, 1224777388630320, 54259623434853360
Offset: 1

Views

Author

Manuel Kauers, Nov 16 2010

Keywords

Comments

The table is enumerated along antidiagonals: A(1,0), A(2,0), A(1,1), A(3,0), A(2,1), A(1,2), A(4,0), A(3,1), A(2,2), A(1,3), ... .

Examples

			A(3,1) = 6 because there are 6 rook paths on 3D chessboards from (0,0,0) to (1,1,1).
Square table A(d,n) begins:
  1,   1,      2,          4,             8, ...
  1,   2,     14,        106,           838, ...
  1,   6,    222,       9918,        486924, ...
  1,  24,   6384,    2306904,     964948464, ...
  1, 120, 291720, 1085674320, 4927561419120, ...
		

Crossrefs

Rows d=1-12 give: A011782, A051708 (from [1,1]), A144045 (from [1,1,1]), A181749, A181750, A181751, A181752, A181724, A181725, A181726, A181727, A181728.
Columns n=0-2 give: A000012, A000142, A105749.
Main diagonal gives A246623.

Programs

  • Maple
    b:= proc(l) option remember; `if`({l[]} minus {0}={}, 1, add(add
           (b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..nops(l)))
        end:
    A:= (d, n)-> b([n$d]):
    seq(seq(A(h-n, n), n=0..h-1), h=1..10); # Alois P. Heinz, Jul 21 2012
  • Mathematica
    b[l_List] := b[l] = If[Union[l] ~Complement~ {0} == {}, 1, Sum[ Sum[ b[ Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; A[d_, n_] := b[Array[n&, d]]; Table[Table[A[h-n, n], {n, 0, h-1}], {h, 1, 10}] // Flatten (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Extensions

Edited by Alois P. Heinz, Jul 21 2012
Minor edits by Vaclav Kotesovec, Sep 03 2014

A003011 Number of permutations of up to n kinds of objects, where each kind of object can occur at most two times.

Original entry on oeis.org

1, 3, 19, 271, 7365, 326011, 21295783, 1924223799, 229714292041, 35007742568755, 6630796801779771, 1527863209528564063, 420814980652048751629, 136526522051229388285611
Offset: 0

Views

Author

Keywords

Comments

E.g.f. A(x)=y satisfies 0=(2x^3+2x^2)y''+(-3x^3+4x-1)y'+(x^3-x^2-2x+3)y. - Michael Somos, Mar 15 2004
Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a sequence of n (possibly empty) sets, each having at most 2 elements. - Bob Proctor, Apr 18 2005

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 17.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = Sum[C(n, k)*A105749(k), 0<=k<=n]
Replace "sequence" with "collection" in comment: A105748.
Replace "sets" with "lists" in comment: A082765.

Programs

  • Mathematica
    Table[nn=2n;a=1+x+x^2/2!;Total[Range[0,nn]!CoefficientList[Series[a^n,{x,0,nn}],x]],{n,0,15}]  (* Geoffrey Critzer, Dec 23 2011 *)
  • PARI
    a(n)=local(A);if(n<0,0,A=(1+x+x^2/2)^n;sum(k=0,2*n,k!*polcoeff(A,k)))

Formula

n*a(n) = (2*n^3 - n^2 + n + 1)*a(n-1) + (-3*n^3 + 4*n^2 + 2*n - 3)*a(n-2) + (n^3 - 2*n^2 - n + 2)*a(n-3).
a(n) ~ sqrt(Pi)*2^(n+1)*n^(2*n+1/2)/exp(2*n-1). - Vaclav Kotesovec, Oct 19 2013

Extensions

More terms from Vladeta Jovovic, Aug 18 2002

A099022 a(n) = Sum_{k=0..n} C(n,k)*(2*n-k)!.

Original entry on oeis.org

1, 3, 38, 1158, 65304, 5900520, 780827760, 142358474160, 34209760152960, 10478436416945280, 3984884716852972800, 1842169367191937414400, 1017403495472574045158400, 661599650478455071589606400, 500354503197888042597961267200, 435447353708763072625260119808000
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2004

Keywords

Comments

Diagonal of Euler-Seidel matrix with start sequence n!.
Number of ways to use the elements of {1,..,k}, n<=k<=2n, once each to form a sequence of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006
Replace "lists" by "sets": A105749.

Crossrefs

Cf. A001517, A076571, A082765 (binomial transform), A105749, row sums of A328826.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=2*n*(2*n-1)*a(n-1)+n*(n-1)*a(n-2), a(0)=1,a(1)=3},a(n),remember):
    map(f, [$0..20]); # Robert Israel, Feb 15 2017
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1], {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
    Table[Sum[Binomial[n,k](2n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 22 2021 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n, binomial(n,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

T(2*n, n), where T is the triangle in A076571.
a(n) = n!*A001517(n).
A082765(n) = Sum[C(n, k)*a(k), 0<=k<=n].
a(n) = 2*n*(2*n-1)*a(n-1)+n*(n-1)*a(n-2). - Vladeta Jovovic, Sep 27 2004
a(n) = int {x = 0..inf} exp(-x)*(x + x^2)^n dx. Applying the results of Nicolaescu, Section 3.2 to this integral we obtain the asymptotic expansion a(n) ~ (2*n)!*exp(1/2)*( 1 - 1/(16*n) - 191/(6144*n^2) + O(1/n^3) ). - Peter Bala, Jul 07 2014

A143990 a(n) = n!*A001515(n-1) with a(0) = 1.

Original entry on oeis.org

1, 1, 4, 42, 888, 31920, 1750320, 136115280, 14254007040, 1934091250560, 330078373228800, 69199130042380800, 17481751115946163200, 5237838647954514201600, 1836425205487182172262400, 744852154338379227748608000, 346052141662324885396697088000, 182572078442025253754006986752000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else (n-1)*(2*n-5)*Self(n-1) + (n-1)*(n-2)*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 27 2023
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[1-Sqrt[1-2*x]], {x,0,m}], x]*(Range[0, m]!)^2] (* G. C. Greubel, Sep 27 2023 *)
  • SageMath
    m=30
    P. = PowerSeriesRing(QQ, m+2)
    def A143990(n): return (factorial(n))^2*P( exp(1-sqrt(1-2*x)) ).list()[n]
    [A143990(n) for n in range(m+1)] # G. C. Greubel, Sep 27 2023

Formula

a(n) = n*(2*n-3)*a(n-1) + n*(n-1)*a(n-2), a(0)=1, a(1)=1. - Sergei N. Gladkovskii, May 17 2013
From G. C. Greubel, Sep 27 2023: (Start)
a(n) = n * A105749(n-1) + [n=0].
a(n) = n! * A144301(n).
E.g.f.: 1 + sqrt(Pi*x/2) * exp(-(1-x)^2/(2*x)) * erfi((1-x)/sqrt(2*x)).
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(1 - sqrt(1-2*x)). (End)

A144906 a(0) = 1; thereafter a(n) = A144422(n)/n.

Original entry on oeis.org

1, 3, 31, 1684, 271776, 97484904, 65617109160, 74248657560720, 130752443907524880, 338450307621257099520, 1232284889962378714855680, 6094200542431309662145478400, 39788645361978802435089535468800, 334957784448996146804912925763507200
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Feb 16 2009

Keywords

Crossrefs

Showing 1-7 of 7 results.