A144905
a(0) = 1; thereafter a(n) = A105749(n)/n.
Original entry on oeis.org
1, 2, 7, 74, 1596, 58344, 3240840, 254535840, 26862378480, 3667537480320, 629083000385280, 132437508454137600, 33575888768939193600, 10090248381797704243200, 3546915020658948703564800, 1441883923593020355819571200, 671220876625092844683849216000, 354750674999711346878469083136000
Offset: 0
-
B := proc(n, k, M) local i; option remember;
if n = k then 1;
elif k < n then 0;
elif n < 1 then 0;
else
add( binomial(k-1,i)*B(n-1,k-1-i,M),i=0..M-1 );
end if;
end proc;
p:=proc(n,M) add(B(n,k,M),k=0..M*n); end;
l:=proc(n,M) n!*p(n,M); end;
[seq(l(n,2)/n,n=1..30)];
A001515
Bessel polynomial y_n(x) evaluated at x=1.
Original entry on oeis.org
1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0
The first few Bessel polynomials are (cf. A001497, A001498):
y_0 = 1
y_1 = 1 + x
y_2 = 1 + 3*x + 3*x^2
y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (first 101 terms from T. D. Noe)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- P. Blasiak, A. Horzela, K. A. Penson, G.H.E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 11.
- O. Frink and H. L. Krall, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65,100-115, 1945. [From _Roger L. Bagula_, Feb 15 2009]
- E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
- Wojciech Mlotkowski and Anna Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- J. Riordan, Letter to N. J. A. Sloane, Jul. 1968
- J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
- N. J. A. Sloane, Letter to J. Riordan, Nov. 1970
- Index entries for sequences related to Bessel functions or polynomials
- Index entries for related partition-counting sequences
See
A144301 for other formulas and comments.
Replace "sets" with "lists" in comment:
A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
-
[(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
-
A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
-
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
{a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
-
[sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023
A181731
Table A(d,n) of the number of paths of a chess rook in a d-dimensional hypercube from (0...0) to (n...n) where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 6, 14, 4, 1, 24, 222, 106, 8, 1, 120, 6384, 9918, 838, 16, 1, 720, 291720, 2306904, 486924, 6802, 32, 1, 5040, 19445040, 1085674320, 964948464, 25267236, 56190, 64, 1, 40320, 1781750880, 906140159280, 4927561419120, 439331916888, 1359631776, 470010, 128, 1, 362880, 214899027840, 1224777388630320, 54259623434853360
Offset: 1
A(3,1) = 6 because there are 6 rook paths on 3D chessboards from (0,0,0) to (1,1,1).
Square table A(d,n) begins:
1, 1, 2, 4, 8, ...
1, 2, 14, 106, 838, ...
1, 6, 222, 9918, 486924, ...
1, 24, 6384, 2306904, 964948464, ...
1, 120, 291720, 1085674320, 4927561419120, ...
Rows d=1-12 give:
A011782,
A051708 (from [1,1]),
A144045 (from [1,1,1]),
A181749,
A181750,
A181751,
A181752,
A181724,
A181725,
A181726,
A181727,
A181728.
-
b:= proc(l) option remember; `if`({l[]} minus {0}={}, 1, add(add
(b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..nops(l)))
end:
A:= (d, n)-> b([n$d]):
seq(seq(A(h-n, n), n=0..h-1), h=1..10); # Alois P. Heinz, Jul 21 2012
-
b[l_List] := b[l] = If[Union[l] ~Complement~ {0} == {}, 1, Sum[ Sum[ b[ Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; A[d_, n_] := b[Array[n&, d]]; Table[Table[A[h-n, n], {n, 0, h-1}], {h, 1, 10}] // Flatten (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
A003011
Number of permutations of up to n kinds of objects, where each kind of object can occur at most two times.
Original entry on oeis.org
1, 3, 19, 271, 7365, 326011, 21295783, 1924223799, 229714292041, 35007742568755, 6630796801779771, 1527863209528564063, 420814980652048751629, 136526522051229388285611
Offset: 0
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 17.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
a(n) = Sum[C(n, k)*
A105749(k), 0<=k<=n]
Replace "sequence" with "collection" in comment:
A105748.
Replace "sets" with "lists" in comment:
A082765.
-
Table[nn=2n;a=1+x+x^2/2!;Total[Range[0,nn]!CoefficientList[Series[a^n,{x,0,nn}],x]],{n,0,15}] (* Geoffrey Critzer, Dec 23 2011 *)
-
a(n)=local(A);if(n<0,0,A=(1+x+x^2/2)^n;sum(k=0,2*n,k!*polcoeff(A,k)))
A099022
a(n) = Sum_{k=0..n} C(n,k)*(2*n-k)!.
Original entry on oeis.org
1, 3, 38, 1158, 65304, 5900520, 780827760, 142358474160, 34209760152960, 10478436416945280, 3984884716852972800, 1842169367191937414400, 1017403495472574045158400, 661599650478455071589606400, 500354503197888042597961267200, 435447353708763072625260119808000
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..224
- L. I. Nicolaescu, Derangements and asymptotics of the Laplace transforms of large powers of a polynomial, New York J. Math. 10 (2004) 117-131.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- P. J. Rossky, M. Karplus, The enumeration of Goldstone diagrams in many-body perturbation theory, J. Chem. Phys. 64 (1976) 1569, equation (9).
- Index entries for related partition-counting sequences
-
f:= gfun:-rectoproc({a(n)=2*n*(2*n-1)*a(n-1)+n*(n-1)*a(n-2), a(0)=1,a(1)=3},a(n),remember):
map(f, [$0..20]); # Robert Israel, Feb 15 2017
-
Table[(2k)! Hypergeometric1F1[-k, -2k, 1], {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
Table[Sum[Binomial[n,k](2n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 22 2021 *)
-
for(n=0,25, print1(sum(k=0,n, binomial(n,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Dec 31 2017
A143990
a(n) = n!*A001515(n-1) with a(0) = 1.
Original entry on oeis.org
1, 1, 4, 42, 888, 31920, 1750320, 136115280, 14254007040, 1934091250560, 330078373228800, 69199130042380800, 17481751115946163200, 5237838647954514201600, 1836425205487182172262400, 744852154338379227748608000, 346052141662324885396697088000, 182572078442025253754006986752000
Offset: 0
-
[n le 2 select 1 else (n-1)*(2*n-5)*Self(n-1) + (n-1)*(n-2)*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 27 2023
-
With[{m=30}, CoefficientList[Series[Exp[1-Sqrt[1-2*x]], {x,0,m}], x]*(Range[0, m]!)^2] (* G. C. Greubel, Sep 27 2023 *)
-
m=30
P. = PowerSeriesRing(QQ, m+2)
def A143990(n): return (factorial(n))^2*P( exp(1-sqrt(1-2*x)) ).list()[n]
[A143990(n) for n in range(m+1)] # G. C. Greubel, Sep 27 2023
A144906
a(0) = 1; thereafter a(n) = A144422(n)/n.
Original entry on oeis.org
1, 3, 31, 1684, 271776, 97484904, 65617109160, 74248657560720, 130752443907524880, 338450307621257099520, 1232284889962378714855680, 6094200542431309662145478400, 39788645361978802435089535468800, 334957784448996146804912925763507200
Offset: 0
Showing 1-7 of 7 results.
Comments