cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 58 results. Next

A143990 a(n) = n!*A001515(n-1) with a(0) = 1.

Original entry on oeis.org

1, 1, 4, 42, 888, 31920, 1750320, 136115280, 14254007040, 1934091250560, 330078373228800, 69199130042380800, 17481751115946163200, 5237838647954514201600, 1836425205487182172262400, 744852154338379227748608000, 346052141662324885396697088000, 182572078442025253754006986752000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else (n-1)*(2*n-5)*Self(n-1) + (n-1)*(n-2)*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 27 2023
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[1-Sqrt[1-2*x]], {x,0,m}], x]*(Range[0, m]!)^2] (* G. C. Greubel, Sep 27 2023 *)
  • SageMath
    m=30
    P. = PowerSeriesRing(QQ, m+2)
    def A143990(n): return (factorial(n))^2*P( exp(1-sqrt(1-2*x)) ).list()[n]
    [A143990(n) for n in range(m+1)] # G. C. Greubel, Sep 27 2023

Formula

a(n) = n*(2*n-3)*a(n-1) + n*(n-1)*a(n-2), a(0)=1, a(1)=1. - Sergei N. Gladkovskii, May 17 2013
From G. C. Greubel, Sep 27 2023: (Start)
a(n) = n * A105749(n-1) + [n=0].
a(n) = n! * A144301(n).
E.g.f.: 1 + sqrt(Pi*x/2) * exp(-(1-x)^2/(2*x)) * erfi((1-x)/sqrt(2*x)).
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(1 - sqrt(1-2*x)). (End)

A144297 BINOMIAL transform of A001515.

Original entry on oeis.org

1, 3, 12, 65, 465, 4212, 46441, 604389, 9071250, 154267865, 2931801639, 61578273462, 1416474723373, 35415138314415, 956276678789100, 27733572777976973, 859779201497486829, 28373745267763162716, 993110842735800666085, 36746019445535955976665
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2008

Keywords

Crossrefs

Cf. A001515.

Programs

  • Magma
    I:=[1,3,12]; [n le 3 select I[n] else (2*n-1)*Self(n-1) -(4*n-9)*Self(n-2) +2*(n-3)*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 28 2023
    
  • Mathematica
    CoefficientList[Series[E^(1+x-Sqrt[1-2*x])/Sqrt[1-2*x],{x,0,20}],x]*Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)
  • SageMath
    def A144297_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(1+x-sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
    A144297_list(40) # G. C. Greubel, Sep 28 2023

Formula

From Vaclav Kotesovec, Oct 20 2012: (Start)
E.g.f.: exp(1+x-sqrt(1-2*x))/sqrt(1-2*x).
Recurrence: a(n) = (2*n+1)*a(n-1) - (4*n-5)*a(n-2) + 2*(n-2)*a(n-3).
a(n) ~ 2^(n+1/2)*n^n/exp(n-3/2). (End)
a(n) = Sum_{j=0..n} binomial(n,j)*A001515(j). - G. C. Greubel, Sep 28 2023

A144647 Second differences of A001515 (or A144301).

Original entry on oeis.org

1, 4, 25, 199, 1936, 22411, 301939, 4649800, 80654599, 1556992441, 33120019516, 769887934729, 19419368959225, 528311452144204, 15421347559288441, 480784227676809991, 15945180393017896024, 560549114426134288675
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2009

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else ( ((2*n-3)*(4*n^2-12*n+13))*Self(n-1) + (4*n^2-8*n+7)*Self(n-2) )/(4*n^2-16*n+19): n in [1..30]]; // G. C. Greubel, Sep 28 2023
    
  • Maple
    A001515 := proc(n) simplify(hypergeom([n+1,-n],[],-1/2)) ; end: A144647 := proc(n) if n =0 then A001515(n) ; else A001515(n+1)-2*A001515(n)+A001515(n-1) ; fi; end: seq(A144647(n),n=0..30) ; # R. J. Mathar, Feb 01 2009
  • Mathematica
    Join[{1},Differences[RecurrenceTable[{a[0]==1,a[1]==2,a[n]== (2n-1)a[n-1]+ a[n-2]},a[n],{n,25}],2]] (* Harvey P. Dale, Jun 18 2011 *)
  • SageMath
    def A144647_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (-1+4*x+2*(1-x)*sqrt(1-2*x))*exp(1-sqrt(1-2*x))/(sqrt(1-2*x))^3 ).egf_to_ogf().list()
    A144647_list(40) # G. C. Greubel, Sep 28 2023

Formula

G.f.: (1-x)^2/(x*Q(0)) + 1 - 1/x, where Q(k)= 1 - x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: T(0)*(1-x)/x + 1 - 1/x, where T(k) = 1 - x*(k+1)/( x*(k+1) - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2013
From G. C. Greubel, Sep 28 2023: (Start)
a(n) = A001515(n+1) - 2*A001515(n) + A001515(n).
a(n) = 2*A001515(n+1) - (2*n+3)*A001515(n).
a(n) = ( ((2*n-1)*(4*n^2 - 4*n + 5))*a(n-1) + (4*n^2 + 3)*a(n-2) )/(4*n^2 - 8*n + 7), with a(0) = 1, a(1) = 4.
E.g.f.: (-1 + 4*x + 2*(1-x)*sqrt(1-2*x))*exp(1-sqrt(1-2*x))/(sqrt(1-2*x))^3. (End)

Extensions

More terms from R. J. Mathar, Feb 01 2009

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A001497 Triangle of coefficients of Bessel polynomials (exponents in decreasing order).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 15, 15, 6, 1, 105, 105, 45, 10, 1, 945, 945, 420, 105, 15, 1, 10395, 10395, 4725, 1260, 210, 21, 1, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 34459425, 34459425, 16216200, 4729725, 945945, 135135, 13860, 990, 45, 1
Offset: 0

Views

Author

Keywords

Comments

The (reverse) Bessel polynomials P(n,x):=Sum_{m=0..n} a(n,m)*x^m, the row polynomials, called Theta_n(x) in the Grosswald reference, solve x*(d^2/dx^2)P(n,x) - 2*(x+n)*(d/dx)P(n,x) + 2*n*P(n,x) = 0.
With the related Sheffer associated polynomials defined by Carlitz as
B(0,x) = 1
B(1,x) = x
B(2,x) = x + x^2
B(3,x) = 3 x + 3 x^2 + x^3
B(4,x) = 15 x + 15 x^2 + 6 x^3 + x^4
... (see Mathworld reference), then P(n,x) = 2^n * B(n,x/2) are the Sheffer polynomials described in A119274. - Tom Copeland, Feb 10 2008
Exponential Riordan array [1/sqrt(1-2x), 1-sqrt(1-2x)]. - Paul Barry, Jul 27 2010
From Vladimir Kruchinin, Mar 18 2011: (Start)
For B(n,k){...} the Bell polynomial of the second kind we have
B(n,k){f', f'', f''', ...} = T(n-1,k-1)*(1-2*x)^(k/2-n), where f(x) = 1-sqrt(1-2*x).
The expansions of the first few rows are:
1/sqrt(1-2*x);
1/(1-2*x)^(3/2), 1/(1-2*x);
3/(1-2*x)^(5/2), 3/(1-2*x)^2, 1/(1-2*x)^(3/2);
15/(1-2*x)^(7/2), 15/(1-2*x)^3, 6/(1-2*x)^(5/2), 1/(1-2*x)^2. (End)
Also the Bell transform of A001147 (whithout column 0 which is 1,0,0,...). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Antidiagonals of A099174 are rows of this entry. Dividing each diagonal by its first element generates A054142. - Tom Copeland, Oct 04 2016
The row polynomials p_n(x) of A107102 are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials above, e.g., (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - Tom Copeland, Oct 10 2016
a(n-1,m-1) counts rooted unordered binary forests with n labeled leaves and m roots. - David desJardins, Feb 23 2019
From Jianing Song, Nov 29 2021: (Start)
The polynomials P_n(x) = Sum_{k=0..n} T(n,k)*x^k satisfy: P_n(x) - (d/dx)P_n(x) = x*P_{n-1}(x) for n >= 1.
{P(n,x)} are related to the Fourier transform of 1/(1+x^2)^(n+1) and x/(1+x^2)^(n+2):
(i) For n >= 0, real number t, we have Integral_{x=-oo..oo} exp(-i*t*x)/(1+x^2)^(n+1) dx = Pi/(2^n*n!) * P_n(|t|) * exp(-|t|);
(ii) For n >= 0, real number t, we have Integral_{x=-oo..oo} x*exp(-i*t*x)/(1+x^2)^(n+2) dx = Pi/(2^(n+1)*(n+1)!) * ((-t)*P_n(-|t|)) * exp(-|t|). (End)
Suppose that f(x) is an n-times differentiable function defined on (a,b) for 0 <= a < b <= +oo, then for n >= 1, the n-th derivative of f(sqrt(x)) on (a^2,b^2) is Sum_{k=1..n} ((-1)^(n-k)*T(n-1,k-1)*f^(k)(sqrt(x))) / (2^n*x^(n-(k/2))), where f^(k) is the k-th derivative of f. - Jianing Song, Nov 30 2023

Examples

			Triangle begins
        1,
        1,       1,
        3,       3,      1,
       15,      15,      6,      1,
      105,     105,     45,     10,     1,
      945,     945,    420,    105,    15,    1,
    10395,   10395,   4725,   1260,   210,   21,   1,
   135135,  135135,  62370,  17325,  3150,  378,  28,  1,
  2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1
Production matrix begins
       1,      1,
       2,      2,      1,
       6,      6,      3,     1,
      24,     24,     12,     4,     1,
     120,    120,     60,    20,     5,    1,
     720,    720,    360,   120,    30,    6,   1,
    5040,   5040,   2520,   840,   210,   42,   7,  1,
   40320,  40320,  20160,  6720,  1680,  336,  56,  8, 1,
  362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
This is the exponential Riordan array A094587, or [1/(1-x),x], beheaded.
- _Paul Barry_, Mar 18 2011
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Reflected version of A001498 which is considered the main entry.
Other versions of this same triangle are given in A144299, A111924 and A100861.
Row sums give A001515. a(n, 0)= A001147(n) (double factorials).
Cf. A104556 (matrix inverse). A039683, A122850.
Cf. A245066 (central terms).

Programs

  • Haskell
    a001497 n k = a001497_tabl !! n !! k
    a001497_row n = a001497_tabl !! n
    a001497_tabl = [1] : f [1] 1 where
       f xs z = ys : f ys (z + 2) where
         ys = zipWith (+) ([0] ++ xs) (zipWith (*) [z, z-1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle */ [[Factorial(2*n-k)/(Factorial(k)*Factorial(n-k)*2^(n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 12 2015
    
  • Maple
    f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    row := n -> seq(coeff(f(n), x, n - k), k = 0..n): seq(row(n), n = 0..9);
  • Mathematica
    m = 9; Flatten[ Table[(n + k)!/(2^k*k!*(n - k)!), {n, 0, m}, {k, n, 0, -1}]] (* Jean-François Alcover, Sep 20 2011 *)
    y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
  • PARI
    T(k, n) = if(n>k||k<0||n<0,0,(2*k-n)!/(n!*(k-n)!*2^(k-n))) /* Ralf Stephan */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)*(2*n-k)!/2^(n-k)/n!)}; /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A001147(n), 9) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = (2*n-m)!/(m!*(n-m)!*2^(n-m)) if n >= m >= 0 else 0 (from Grosswald, p. 7).
a(n, m)= 0, n= m >= 0 (from Grosswald p. 23, (19)).
E.g.f. for m-th column: ((1-sqrt(1-2*x))^m)/(m!*sqrt(1-2*x)).
G.f.: 1/(1-xy-x/(1-xy-2x/(1-xy-3x/(1-xy-4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009
T(n,k) = if(k<=n, C(2n-k,2(n-k))*(2(n-k)-1)!!,0) = if(k<=n, C(2n-k,2(n-k))*A001147(n-k),0). - Paul Barry, Mar 18 2011
Row polynomials for n>=1 are given by 1/t*D^n(exp(x*t)) evaluated at x = 0, where D is the operator 1/(1-x)*d/dx. - Peter Bala, Nov 25 2011
The matrix product A039683*A008277 gives a signed version of this triangle. Dobinski-type formula for the row polynomials: R(n,x) = (-1)^n*exp(x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-2*(n-1))*(-x)^k/k!. Cf. A122850. - Peter Bala, Jun 23 2014

A000806 Bessel polynomial y_n(-1).

Original entry on oeis.org

1, 0, 1, -5, 36, -329, 3655, -47844, 721315, -12310199, 234615096, -4939227215, 113836841041, -2850860253240, 77087063678521, -2238375706930349, 69466733978519340, -2294640596998068569, 80381887628910919255, -2976424482866702081004, 116160936719430292078411
Offset: 0

Views

Author

Keywords

Comments

a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (i,i+1) for all i in [1,2n-1] (all adjacent integers). The circular version of this constraint is A003436. - Olivier Gérard, Feb 08 2011
|a(n)| is the number of perfect matchings in the complement of P_{2n} where P_{2n} is the path graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
The unsigned version of these numbers now has its own entry: see A278990. - N. J. A. Sloane, Dec 07 2016

Examples

			For n=3, the a(3) = 5 solutions are (14) (25) (36), (14) (26) (35), (15) (24) (36), (16) (24) (35), (13) (25) (46) excluding 10 other possible pairings.
G.f. = 1 + x^2 - 5*x^3 + 36*x^4 - 329*x^5 + 3655*x^6 - 47844*x^7 + ...
		

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Polynomial coefficients are in A001498. Cf. A003436.

Programs

  • Magma
    I:=[0,1]; [1] cat [n le 2 select I[n] else (1-2*n)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
  • Maple
    A000806 := proc(n) option remember; if n<=1 then 1-n else (1-2*n)*procname(n-1)+procname(n-2); fi; end proc;
    a := n -> hypergeom([n+1,-n],[],1/2): seq(simplify(a(n)),n=0..20); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := a[n] = (-2n+1)*a[n-1] + a[n-2]; a[0] = 1; a[1] = 0; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 29 2011, after T. D. Noe *)
    Table[Sum[Binomial[n, i]*(2*n-i)!/2^(n-i)*(-1)^(n-i)/n!, {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2013 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, (-1)^m (2 m - 1)!! Hypergeometric1F1[ -m, -2 m, -2] ]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, Sum[ (-1)^(m - i) (2 m - i)! / (2^(m - i) i! (m - i)!), {i, 0, m}] ]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, If[ m<1, 1, (-1)^m Numerator @ FromContinuedFraction[ Table[ (-1)^Quotient[k, 2] If[ OddQ[k], k, 1], {k, 2 m}] ] ] ]; (* Michael Somos, Jan 27 2014 *)
    Table[(-1)^n (2 n - 1)!! Hypergeometric1F1[-n, -2 n, -2], {n, 0, 20}] (* Eric W. Weisstein, Nov 14 2018 *)
  • PARI
    {a(n) = if( n<0, n = -n-1); sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) )}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, n = -n-1); A = sqrt(1 + 2*x + x * O(x^n)); n! * polcoeff( exp(A-1) / A, n)}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, n = -n-1); n+=2; -(-1)^n * n! * polcoeff( serreverse( sum(k=1, n, k^(k-2)* x^k / k!, x * O(x^n))), n)}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = if( n<0, n=-n-1); contfracpnqn( vector( 2*n, k, (-1)^(k\2) * if( k%2, k, 1))) [1,1] }; /* Michael Somos, Jan 27 2014 */
    

Formula

E.g.f.: exp(sqrt(1 + 2*x) - 1) / sqrt(1 + 2*x). - Michael Somos, Feb 16 2002
D-finite with recurrence a(n) = (-2*n+1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
If y = x + Sum_{k>1} A000272(k) * x^k/k!, then y = x + Sum{k>1} a(k-2) * (-y)^k/k!. - Michael Somos, Sep 07 2005
a(-1-n) = a(n). - Michael Somos, Apr 02 2007
a(n) = Sum_{m=0..n} A001498(n,m)*(-1)^m, n>=0 (alternating row sums of Bessel triangle).
E.g.f. for unsigned version: -exp(sqrt(1-2*x)-1). - Karol A. Penson, Mar 20 2010 [gives -1, 1, 0, 1, 5, 36, 329, ... ]
E.g.f. for unsigned version: 1/(sqrt(1-2*x))*exp(sqrt(1-2*x)-1). - Sergei N. Gladkovskii, Jul 03 2012
G.f.: 1/G(0) where G(k) = 1 - x + x*(2*k+1)/(1 - x + 2*x*(k+1)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jul 10 2012
G.f.: 1+x/U(0) where U(k) = 1 - x + x*(k+1)/U(k+1) ; (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Oct 06 2012
a(n) = BesselK[n+1/2,-1]/BesselK[5/2,-1]. - Vaclav Kotesovec, Aug 07 2013
|a(n)| ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 07 2013
0 = a(n) * (a(n+2)) + a(n+1) * (-a(n+1) + 2*a(n+2) + a(n+3)) + a(n+2) * (-a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
a(n) = -i*(BesselK[3/2,1]*BesselI[n+3/2,-1] - BesselI[3/2,-1]*BesselK[n+3/2,1]), n>=0 for unsigned version - G. C. Greubel , Apr 19 2015
a(n) = hypergeom( [n+1, -n], [], 1/2). - Peter Luschny, Nov 10 2016
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * (-2)^n * hypergeometric1f1(-n; -2*n; -2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; -2*t/(1-t)^2). (End)

A001517 Bessel polynomials y_n(x) (see A001498) evaluated at 2.

Original entry on oeis.org

1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Keywords

Comments

Numerators of successive convergents to e using continued fraction 1 + 2/(1 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + 1/(22 + 1/26 + ...)))))).
Number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006

References

  • L. Euler, 1737.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 0.126, p. 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A080893.
a(n) = A099022(n)/n!.
Partial sums: A105747.
Replace "lists" with "sets" in comment: A001515.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n) = (4*n-2)*a(n-1) + a(n-2),a(0)=1,a(1)=3},a(n),remember):
    map(A, [$0..20]); # Robert Israel, Jul 22 2015
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # N. J. A. Sloane, May 09 2016
    seq(simplify(KummerU(-n, -2*n, 1)), n = 0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=sum(k=0,n,(n+k)!/k!/(n-k)!)
    
  • Sage
    A001517 = lambda n: hypergeometric([-n, n+1], [], -1)
    [simplify(A001517(n)) for n in (0..16)] # Peter Luschny, Oct 17 2014

Formula

a(n) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!) = (e/Pi)^(1/2) K_{n+1/2}(1/2).
D-finite with recurrence a(n) = (4*n-2)*a(n-1) + a(n-2), n >= 2.
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A000522(n+k). - Vladeta Jovovic, Sep 30 2006
E.g.f. (for offset 1): exp(x*c(x)), where c(x)=(1-sqrt(1-4*x))/(2*x) (cf. A000108). - Vladimir Kruchinin, Aug 10 2010
G.f.: 1/Q(0), where Q(k) = 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (1/n!)*Integral_{x>=0} (x*(1 + x))^n*exp(-x) dx. Expansion of exp(x) in powers of y = x*(1 - x): exp(x) = 1 + y + 3*y^2/2! + 19*y^3/3! + 193*y^4/4! + 2721*y^5/5! + .... - Peter Bala, Dec 15 2013
a(n) = exp(1/2) / sqrt(Pi) * BesselK(n+1/2, 1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 2^(2*n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) = hypergeom([-n, n+1], [], -1). - Peter Luschny, Oct 17 2014
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 4^n * hypergeometric1f1(-n; -2*n; 1).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 4*t/(1-t)^2). (End)
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = KummerU(-n, -2*n, 1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000
Additional comments from Michael Somos, Jul 15 2002

A243953 E.g.f.: exp( Sum_{n>=1} A000108(n-1)*x^n/n ), where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan numbers.

Original entry on oeis.org

1, 1, 2, 8, 56, 592, 8512, 155584, 3456896, 90501632, 2728876544, 93143809024, 3550380249088, 149488545697792, 6890674623094784, 345131685337530368, 18664673706719019008, 1083931601731053223936, 67278418002152175960064, 4444711314548967826259968
Offset: 0

Views

Author

Paul D. Hanna, Jun 21 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 56*x^4/4! + 592*x^5/5! + 8512*x^6/6! +...
such that the logarithmic derivative of the e.g.f. equals the Catalan numbers:
log(A(x)) = x + x^2/2 + 2*x^3/3 + 5*x^4/4 + 14*x^5/5 + 42*x^6/6 + 132*x^7/7 + 429*x^8/8 +...+ A000108(n-1)*x^n/n +...
thus A'(x)/A(x) = C(x) where C(x) = 1 + x*C(x)^2.
Also, e.g.f. A(x) satisfies:
A(x) = 1 + x/A(x) + 4*(x/A(x))^2/2! + 32*(x/A(x))^3/3! + 400*(x/A(x))^4/4! + 6912*(x/A(x))^5/5! +...+ (n+1)^(n-2)*2^n*(x/A(x))^n/n! +...
If we form a table of coefficients of x^k/k! in A(x)^n, like so:
[1, 1,  2,    8,    56,    592,    8512,   155584,    3456896, ...];
[1, 2,  6,   28,   200,   2064,   28768,   511424,   11106432, ...];
[1, 3, 12,   66,   504,   5256,   72288,  1259712,   26822016, ...];
[1, 4, 20,  128,  1064,  11488,  158752,  2740480,   57517184, ...];
[1, 5, 30,  220,  2000,  22680,  319600,  5525600,  115094400, ...];
[1, 6, 42,  348,  3456,  41472,  602352, 10533024,  219321216, ...];
[1, 7, 56,  518,  5600,  71344, 1075648, 19176304,  401916032, ...];
[1, 8, 72,  736,  8624, 116736, 1835008, 33554432,  712166016, ...];
[1, 9, 90, 1008, 12744, 183168, 3009312, 56687040, 1224440064, ...]; ...
then the main diagonal equals (n+1)^(n-1) * 2^n for n>=0:
[1, 2, 12, 128, 2000, 41472, 1075648, 33554432, 1224440064, ...].
Note that Sum_{n>=0} (n+1)^(n-2) * 2^n * x^n/n! is an e.g.f. of A127670.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(1 - Sqrt[1-4*x]) * (1 + Sqrt[1-4*x])/2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 22 2014 *)
  • Maxima
    a(n):=if n=0 then 1 else sum((n-1)!/(n-i-1)!*binomial(2*i,i)/(i+1)*a(n-i-1),i,0,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
  • PARI
    /* Explicit formula: */
    {a(n)=n!*polcoeff( exp(1-sqrt(1-4*x +x*O(x^n))) * (1 + sqrt(1-4*x +x*O(x^n)))/2,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Logarithmic derivative of e.g.f. equals Catalan numbers: */
    {A000108(n) = binomial(2*n,n)/(n+1)}
    {a(n)=n!*polcoeff( exp(sum(m=1,n, A000108(m-1)*x^m/m)+x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* From [x^n/n!] A(x)^(n+1) = (n+1)^(n-1)*2^n */
    {a(n)=n!*polcoeff(x/serreverse(x*sum(m=0, n+1, (m+1)^(m-2)*(2*x)^m/m!)+x^2*O(x^n)), n)}
    for(n=0,25,print1(a(n),", "))
    

Formula

E.g.f. A(x) satisfies:
(1) A(x) = exp(1 - sqrt(1-4*x)) * (1 + sqrt(1-4*x))/2.
(2) A(x)^2 - A(x)*A'(x) + x*A'(x)^2 = 0 (differential equation).
(3) [x^n/n!] A(x)^(n+1) = (n+1)^(n-1)*2^n for n>=0.
(4) A(x) = G(x/A(x)) such that A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)^(n-2)*2^n*x^n/n!.
(5) A(x) = x / Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (n+1)^(n-2)*2^n*x^n/n!.
(6) x = -LambertW(-2*x/A(x)) * (2 + LambertW(-2*x/A(x)))/4. [From a formula by Vaclav Kotesovec in A127670]
a(n) ~ 2^(2*n-5/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Jun 22 2014
a(n) = sum(i=0..n-1, (n-1)!/(n-i-1)!*binomial(2*i,i)/(i+1)*a(n-i-1)), a(0)=1. - Vladimir Kruchinin, Feb 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n+2) = 2^(n+1)*A001515(n).
a(n+1) = Sum_{k = 0..n} binomial(n+k-1,2*k)*2^(n-k)*(2*k)!/k!.
D-finite with recurrence a(n) = (4*n - 10)*a(n-1) + 4*a(n-2) with a(0) = a(1) = 1.
The derivative A'(x) of the e.g.f. is equal to exp(2*x*c(x)), that is, A'(x) is the Catalan transform of exp(2*x) as defined in Barry, Section 3. (End)
E.g.f. A(x) satisfies (x/A(x))' = 1/A'(x). - Alexander Burstein, Oct 31 2023

A122848 Exponential Riordan array (1, x(1+x/2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Entries are Bessel polynomial coefficients. Row sums are A000085. Diagonal sums are A122849. Inverse is A122850. Product of A007318 and A122848 gives A100862.
T(n,k) is the number of self-inverse permutations of {1,2,...,n} having exactly k cycles. - Geoffrey Critzer, May 08 2012
Bessel numbers of the second kind. For relations to the Hermite polynomials and the Catalan (A033184 and A009766) and Fibonacci (A011973, A098925, and A092865) matrices, see Yang and Qiao. - Tom Copeland, Dec 18 2013.
Also the inverse Bell transform of the double factorial of odd numbers Product_{k= 0..n-1} (2*k+1) (A001147). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    0    3    1
    0    0    3    6    1
    0    0    0   15   10    1
    0    0    0   15   45   15    1
    0    0    0    0  105  105   21    1
    0    0    0    0  105  420  210   28    1
    0    0    0    0    0  945 1260  378   36    1
From _Gus Wiseman_, Jan 12 2021: (Start)
As noted above, a(n) is the number of set partitions of {1..n} into k singletons or pairs. This is also the number of set partitions of subsets of {1..n} into n - k pairs. In the first case, row n = 5 counts the following set partitions:
  {{1},{2,3},{4,5}}  {{1},{2},{3},{4,5}}  {{1},{2},{3},{4},{5}}
  {{1,2},{3},{4,5}}  {{1},{2},{3,4},{5}}
  {{1,2},{3,4},{5}}  {{1},{2,3},{4},{5}}
  {{1,2},{3,5},{4}}  {{1,2},{3},{4},{5}}
  {{1},{2,4},{3,5}}  {{1},{2},{3,5},{4}}
  {{1},{2,5},{3,4}}  {{1},{2,4},{3},{5}}
  {{1,3},{2},{4,5}}  {{1},{2,5},{3},{4}}
  {{1,3},{2,4},{5}}  {{1,3},{2},{4},{5}}
  {{1,3},{2,5},{4}}  {{1,4},{2},{3},{5}}
  {{1,4},{2},{3,5}}  {{1,5},{2},{3},{4}}
  {{1,4},{2,3},{5}}
  {{1,4},{2,5},{3}}
  {{1,5},{2},{3,4}}
  {{1,5},{2,3},{4}}
  {{1,5},{2,4},{3}}
In the second case, we have:
  {{1,2},{3,4}}  {{1,2}}  {}
  {{1,2},{3,5}}  {{1,3}}
  {{1,2},{4,5}}  {{1,4}}
  {{1,3},{2,4}}  {{1,5}}
  {{1,3},{2,5}}  {{2,3}}
  {{1,3},{4,5}}  {{2,4}}
  {{1,4},{2,3}}  {{2,5}}
  {{1,4},{2,5}}  {{3,4}}
  {{1,4},{3,5}}  {{3,5}}
  {{1,5},{2,3}}  {{4,5}}
  {{1,5},{2,4}}
  {{1,5},{3,4}}
  {{2,3},{4,5}}
  {{2,4},{3,5}}
  {{2,5},{3,4}}
(End)
		

Crossrefs

Row sums are A000085.
Column sums are A001515.
Same as A049403 but with a first column k = 0.
The same set partitions counted by number of pairs are A100861.
Reversing rows gives A111924 (without column k = 0).
A047884 counts standard Young tableaux by size and greatest row length.
A238123 counts standard Young tableaux by size and least row length.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
    (* Second program: *)
    rows = 12;
    t = Join[{1, 1}, Table[0, rows]];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 23 2018,after Peter Luschny *)
    sbs[{}]:={{}};sbs[set:{i_,_}]:=Join@@Function[s,(Prepend[#1,s]&)/@sbs[Complement[set,s]]]/@Cases[Subsets[set],{i}|{i,_}];
    Table[Length[Select[sbs[Range[n]],Length[#]==k&]],{n,0,6},{k,0,n}] (* Gus Wiseman, Jan 12 2021 *)
  • PARI
    {T(n,k)=if(2*kn, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[inverse_bell_transform from A265605]
    multifact_2_1 = lambda n: prod(2*k + 1 for k in (0..n-1))
    inverse_bell_matrix(multifact_2_1, 9) # Peter Luschny, Dec 31 2015

Formula

Number triangle T(n,k) = k!*C(n,k)/((2k-n)!*2^(n-k)).
T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006
E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012
Triangle equals the matrix product A008275*A039755. Equivalently, the n-th row polynomial R(n,x) is given by the Type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} P(n,2*k+1)*(x/2)^k/k!, where P(n,x) = x*(x-1)*...*(x-n+1) denotes the falling factorial polynomial. Cf. A113278. - Peter Bala, Jun 23 2014
From Daniel Checa, Aug 28 2022: (Start)
E.g.f. for the m-th column: (x^2/2+x)^m/m!.
T(n,k) = T(n-1,k-1) + (n-1)*T(n-2,k-1) for n>1 and k=1..n, T(0,0) = 1. (End)

A001518 Bessel polynomial y_n(3).

Original entry on oeis.org

1, 4, 37, 559, 11776, 318511, 10522639, 410701432, 18492087079, 943507142461, 53798399207356, 3390242657205889, 233980541746413697, 17551930873638233164, 1421940381306443299981, 123726365104534205331511, 11507973895102987539130504
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Polynomial coefficients are in A001498.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=3*(2*n-1)*a(n-1)+a(n-2),a(0)=1,a(1)=4},a(n),remember):
    map(f, [$0..60]); # Robert Israel, Aug 06 2015
  • Mathematica
    Table[Sum[(n+k)!*3^k/(2^k*(n-k)!*k!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace(exp(1/3 - 1/3 * (1-6*x)^(1/2)) / (1-6*x)^(1/2))) \\ Gheorghe Coserea, Aug 04 2015

Formula

y_n(x) = Sum_{k=0..n} (n+k)!*(x/2)^k/((n-k)!*k!).
D-finite with recurrence a(n) = 3(2n-1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
G.f.: 1/Q(0), where Q(k)= 1 - x - 3*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = exp(1/3)*sqrt(2/(3*Pi))*BesselK(1/2+n,1/3). - Gerry Martens, Jul 22 2015
a(n) ~ sqrt(2) * 6^n * n^n / exp(n-1/3). - Vaclav Kotesovec, Jul 22 2015
E.g.f.: exp(1/3 - 1/3*(1-6*x)^(1/2)) / (1-6*x)^(1/2). (formula due to B. Salvy, see Plouffe link) - Gheorghe Coserea, Aug 06 2015
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 6^n * hypergeometric1f1(-n; -2*n; 2/3).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 6*t/(1-t)^2). (End)
Showing 1-10 of 58 results. Next