cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A000369 Triangle of numbers related to triangle A049213; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.

Original entry on oeis.org

1, 3, 1, 21, 9, 1, 231, 111, 18, 1, 3465, 1785, 345, 30, 1, 65835, 35595, 7650, 825, 45, 1, 1514205, 848925, 196245, 24150, 1680, 63, 1, 40883535, 23586255, 5755050, 775845, 62790, 3066, 84, 1, 1267389585, 748471185, 190482705, 27478710
Offset: 1

Views

Author

Keywords

Comments

a(n,m) := S2p(-3; n,m), a member of a sequence of triangles including S2p(-1; n,m) := A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) := A008277(n,m) (Stirling 2nd kind). a(n,1)= A008545(n-1).
a(n,m), n>=m>=1, enumerates unordered n-vertex m-forests composed of m increasing plane (aka ordered) trees, with one vertex of out-degree r=0 (leafs or a root) and each vertex with out-degree r>=1 comes in r+2 types (like for an (r+2)-ary vertex). Proof from the e.g.f. of the first column Y(z):=1-(1-4*x)^(1/4) and the F. Bergeron et al. reference given in A001498, eq. (8), Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w)^3. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
  1;
  3, 1;
  21, 9, 1;
  231, 111, 18, 1;
  3465, 1785, 345, 30, 1; ...
Tree combinatorics for a(3,2)=9: there are three m=2 forests each with one tree a root (with out-degree r=0) and the other tree a root and a leaf coming in three versions (like for a 3-ary vertex). Each such forest can be labeled increasingly in three ways (like (1,(23)), (2,(13)) and (3,(12))) yielding 9 such forests. - _Wolfdieter Lang_, Oct 12 2007
		

Crossrefs

Row sums give A016036. Cf. A004747.
Columns include A008545.
Alternating row sums A132163.

Programs

Formula

a(n, m) = n!*A049213(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n-m)*a(n, m) + a(n, m-1), n >= m >= 1; a(n, m) := 0, n
E.g.f. of m-th column: ((1-(1-4*x)^(1/4))^m)/m!.
From Peter Bala, Jun 08 2016: (Start)
With offset 0, the e.g.f. is 1/(1 - 4*x)^(3/4)*exp(t*(1 - (1 - 4*x)^(1/4))) = 1 + (3 + t)*x + (21 + 9*t + t^2)*x^2/2! + ....
Thus with row and column numbering starting at 0, this triangle is the exponential Riordan array [d/dx(F(x)), F(x)], belonging to the Derivative subgroup of the exponential Riordan group, where F(x) = 1 - (1 - 4*x)^(1/4).
Row polynomial recurrence: R(n+1,t) = t*Sum_{k = 0..n} binomial(n,k)*A008545(k)*R(n-k,t) with R(0,t) = 1. (End)

A104556 Matrix inverse of triangle A001497 of Bessel polynomials, read by rows; essentially the same as triangle A096713 of modified Hermite polynomials.

Original entry on oeis.org

1, -1, 1, 0, -3, 1, 0, 3, -6, 1, 0, 0, 15, -10, 1, 0, 0, -15, 45, -15, 1, 0, 0, 0, -105, 105, -21, 1, 0, 0, 0, 105, -420, 210, -28, 1, 0, 0, 0, 0, 945, -1260, 378, -36, 1, 0, 0, 0, 0, -945, 4725, -3150, 630, -45, 1, 0, 0, 0, 0, 0, -10395, 17325, -6930, 990, -55, 1, 0, 0, 0, 0, 0, 10395, -62370, 51975, -13860, 1485, -66, 1
Offset: 0

Author

Paul D. Hanna, Mar 14 2005

Keywords

Comments

Exponential Riordan array [1 - x, x - x^2/2]; cf. A049403. - Peter Bala, Apr 08 2013
Also the Bell transform of (-1)^n if n<2 else 0 and the inverse Bell transform of A001147(n) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Rows begin:
   1;
  -1,  1;
   0, -3,   1;
   0,  3,  -6,    1;
   0,  0,  15,  -10,    1;
   0,  0, -15,   45,  -15,     1;
   0,  0,   0, -105,  105,   -21,     1;
   0,  0,   0,  105, -420,   210,   -28,   1;
   0,  0,   0,    0,  945, -1260,   378, -36,   1;
   0,  0,   0,    0, -945,  4725, -3150, 630, -45, 1; ...
The columns being equal in absolute value to the rows of the matrix inverse A001497:
    1;
    1,   1;
    3,   3,   1;
   15,  15,   6,   1;
  105, 105,  45,  10,  1;
  945, 945, 420, 105, 15, 1; ...
		

Crossrefs

Row sums are found in A001464 (offset 1).
Absolute row sums equal A000085.

Programs

  • Mathematica
    With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - t)*Exp[x*(t - t^2/2)], {t, 0, nmax}, {x, 0, nmax}], t], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 10 2018 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: (-1)^n if n<2 else 0, 9) # Peter Luschny, Jan 19 2016

Formula

E.g.f. : (1 - t)*exp(x*(t - t^2/2)) = 1 + (-1 + x)*t + (-3*x + x^2)*t^2/2! + ... - Peter Bala, Apr 08 2013

A132062 Sheffer triangle (1,1-sqrt(1-2*x)). Extended Bessel triangle A001497.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 15, 15, 6, 1, 0, 105, 105, 45, 10, 1, 0, 945, 945, 420, 105, 15, 1, 0, 10395, 10395, 4725, 1260, 210, 21, 1, 0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 0, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 0
Offset: 0

Author

Wolfdieter Lang Sep 14 2007

Keywords

Comments

This is a Jabotinsky type exponential convolution triangle related to A001147 (double factorials). For Jabotinsky type triangles See the D. E. Knuth reference given under A039692.
The subtriangle (n>=m>=1) is A001497(n,m) (Bessel).
For the combinatorial interpretation in terms of unordered forests of increasing plane trees see the W. Lang comment and example under A001497.
This is a special type of Sheffer triangle. See the S. Roman reference given under A048854 (the notation here differs).
This triangle (or the A001497 subtriangle) appears as generalized Stirling numbers of the second kind, S2p(-1,n,m):=S2(-k;m,m)*(-1)^(n-m) for k=1, eqs. (27)-(29) of the W. Lang reference.
Also the Bell transform of the double factorial of odd numbers A001147. For the Bell transform of the double factorial of even numbers A000165 see A039683. For the definition of the Bell transform see A264428. - Peter Luschny, Dec 20 2015

Examples

			[1]
[0,      1]
[0,      1,      1]
[0,      3,      3,     1]
[0,     15,     15,     6,     1]
[0,    105,    105,    45,    10,    1]
[0,    945,    945,   420,   105,   15,   1]
[0,  10395,  10395,  4725,  1260,  210,  21,  1]
[0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1]
		

References

  • Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From N. J. A. Sloane, Sep 15 2012
  • Steven Roman, The Umbral Calculus, Pure and Applied Mathematics, 111, Academic Press, 1984. (p. 78) [Emanuele Munarini, Oct 10 2017]

Crossrefs

Columns m=1: A001147.
Row sums give [1, A001515]. Alternating row sums give [1, -A000806].
Cf. A122850. - R. J. Mathar, Mar 20 2009

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016
    # Alternative:
    egf := exp(y*(1 - sqrt(1 - 2*x))): serx := series(egf, x, 12):
    coefx := n -> n!*coeff(serx, x, n): row := n -> seq(coeff(coefx(n), y, k), k = 0..n): for n from 0 to 8 do row(n) od;  # Peter Luschny, Apr 25 2024
  • Mathematica
    Table[If[k <= n, Binomial[2n-2k,n-k] Binomial[2n-k-1,k-1] (n-k)!/2^(n-k), 0], {n, 0, 6}, {k, 0, n}] // Flatten (* Emanuele Munarini, Oct 10 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[(2#-1)!!&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Sage
    # uses[bell_transform from A264428]
    def A132062_row(n):
        a = sloane.A001147
        dblfact = a.list(n)
        return bell_transform(n, dblfact)
    [A132062_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015

Formula

a(n,m)=0 if n
E.g.f. m-th column ((x*f2p(1;x))^m)/m!, m>=0. with f2p(1;x):=1-sqrt(1-2*x)= x*c(x/2) with the o.g.f.of A000108 (Catalan).
From Emanuele Munarini, Oct 10 2017: (Start)
a(n,k) = binomial(2*n-2*k,n-k)*binomial(2*n-k-1,k-1)*(n-k)!/2^(n-k).
The row polynomials p_n(x) (studied by Carlitz) satisfy the recurrence: p_{n+2}(x) - (2*n+1)*p_{n+1}(x) - x^2*p_n(x) = 0. (End)
T(n, k) = n! [y^k] [x^n] exp(y*(1 - sqrt(1 - 2*x))). - Peter Luschny, Apr 25 2024

A143171 Partition number array, called M32(-1), related to A001497(n-1,m-1) = |S2(-1;n,m)| (generalized Stirling2 triangle).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 15, 12, 3, 6, 1, 105, 75, 30, 30, 15, 10, 1, 945, 630, 225, 90, 225, 180, 15, 60, 45, 15, 1, 10395, 6615, 2205, 1575, 2205, 1575, 630, 315, 525, 630, 105, 105, 105, 21, 1, 135135, 83160, 26460, 17640, 7875, 26460, 17640, 12600, 3150, 2520, 5880, 6300
Offset: 1

Author

Wolfdieter Lang, Oct 09 2008, Dec 04 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k)=:M32(-1;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
a(n,k) enumerates special unordered forests related to the k-th partition of n in the A-St order. The k-th partition of n is given by the exponents enk :=(e(n,k,1),...,e(n,k,n)) of 1,2,...n. The number of parts is m = Sum_{j=1..n} e(n,k,j). The special (enk)-forest is composed of m rooted increasing r-ary trees if the outdegree is r >= 0.
This generalizes the array of multinomials called M_3 in Abramowitz-Stegun, pp. 831-2. M_3 = A036040.
If M32(-1;n,k) is summed over those k with fixed number of parts m one obtains triangle A001497(n-1,m-1) = |S2(-1;n,m)|, a generalization of Stirling numbers of the second kind. For S2(K;n,m), K from the integers, see the reference under A035342.

Examples

			a(4,3) = 3. The relevant partition of 4 is (2^2). The 3 unordered (0,2,0,0)-forests are composed of the following 2 rooted increasing unary trees 1--2,3--4; 1--3,2--4 and 1--4,2--3. The trees are unary because r=1 vertices are unary (1-ary) and for the leaves (r=0) the arity does not matter.
		

Crossrefs

Cf. A143173 M32(-2) array.

Formula

a(n,k) = (n!/Product_{j=1..n} e(n,k,j)!*j!^e(n,k,j)) * Product_{j=1..n} |S2(-1,j,1)|^e(n,k,j) = M3(n,k)*Product_{j=1..n} |S2(-1,j,1)|^e(n,k,j), with |S2(-1,n,1)| = A001147(n-1) = (2*n-3)(!^2) (2-factorials) for n >= 2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1. M3(n,k) := A036040(n,k), k=1..p(n), p(n) := A000041(n).

A245066 Central terms of triangles A001497 and A001498.

Original entry on oeis.org

1, 3, 45, 1260, 51975, 2837835, 192972780, 15713497800, 1490818103775, 161505294575625, 19671344879311125, 2660996470946814000, 395823225053338582500, 64214706279807005422500, 11283441246308945238525000, 2134827083801652439128930000
Offset: 0

Author

Reinhard Zumkeller, Jul 11 2014

Keywords

Examples

			G.f. = 1 + 3*x + 45*x^2 + 1260*x^3 + 51975*x^4 + 2837835*x^5 + ...
		

Programs

  • Haskell
    a245066 n = a001497 (2 * n) n
    
  • PARI
    {a(n) = if( n<0, 0, (3*n)! / (2^n * n!^2))}; /* Michael Somos, Jul 11 2014 */

Formula

a(n) = A001497(2*n,n) = A001498(2*n,n).
O.g.f. A(x) satisfies 0 = 6*A(x) + (-2 + 54*x) * A'(x) + 27*x^2 * A''(x). - Michael Somos, Jul 11 2014
E.g.f. A(x) satisfies 0 = 6*A(x) + (-2 + 54*x) * A'(x) + (-2*x + 27*x^2) * A''(x). - Michael Somos, Jul 11 2014
a(n) = (3*n)! / (2^n * n!^2). - Michael Somos, Jul 11 2014
a(n) = (2*n-1)!! * [x^(2*n)] x^n/(1 - x)^(2*n+1). - Ilya Gutkovskiy, Nov 24 2017

A144269 Partition number array, called M32hat(-1)= 'M32(-1)/M3'= 'A143171/A036040', related to A001497(n-1,m-1)= |S2(-1;n,m)| (generalized Stirling triangle).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 15, 3, 1, 1, 1, 105, 15, 3, 3, 1, 1, 1, 945, 105, 15, 9, 15, 3, 1, 3, 1, 1, 1, 10395, 945, 105, 45, 105, 15, 9, 3, 15, 3, 1, 3, 1, 1, 1, 135135, 10395, 945, 315, 225, 945, 105, 45, 15, 9, 105, 15, 9, 3, 1, 15, 3, 1, 3, 1, 1, 1, 2027025, 135135, 10395, 2835
Offset: 1

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M32hat(-1;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
If M32hat(-1;n,k) is summed over those k with fixed number of parts m one obtains triangle S2hat(-1):= A144270(n,m).

Examples

			a(4,3)= 1 = |S2(-1,2,1)|^2. The relevant partition of 4 is (2^2).
[1]; [1,1]; [3,1,1]; [15,3,1,1,1]; [105,15,3,3,1,1,1]; ... [From _Wolfdieter Lang_, Oct 23 2008]
		

Crossrefs

Cf. A144271 (M32hat(-2) array).

Formula

a(n,k)= product(|S2(-1,j,1)|^e(n,k,j),j=1..n) with |S2(-1,n,1)|= A001147(n-1) = (2*n-3)(!^2) (2-factorials) for n>=2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Formally a(n,k)= 'M32(-1)/M3' = 'A143171/A036040' (elementwise division of arrays).

Extensions

Corrected all entries. Wolfdieter Lang, Oct 23 2008

A109767 Triangle T(n,k), 0 <= k <= n, defined by T(n,k) = 2^k*A001497(n,k).

Original entry on oeis.org

1, 2, 2, 12, 12, 4, 120, 120, 48, 8, 1680, 1680, 720, 160, 16, 30240, 30240, 13440, 3360, 480, 32, 665280, 665280, 302400, 80640, 13440, 1344, 64, 17297280, 17297280, 7983360, 2217600, 403200, 48384, 3584, 128, 518918400, 518918400
Offset: 0

Author

Philippe Deléham, Aug 12 2005

Keywords

Comments

Also square array of unsigned coefficients of Hermite polynomials.
T[n,k]is A128099(2n,k)*A001813(n-k). - Richard Turk, Sep 26 2017

Examples

			Rows begin:
     1
     2,    2,
    12,   12,   4,
   120,  120,  48,   8,
  1680, 1680, 720, 160, 16,
Unsigned coefficients of Hermite polynomials:
     1,     2,      4,       8, ...
     2,    12,     48,     160, ...
    12,   120,    720,    3360, ...
   120,  1680,  13440,   80640, ...
  1680, 30240, 302400, 2217600, ...
		

Crossrefs

Cf. A001497.

Programs

  • Magma
    /* As triangle */ [[Factorial(2*n-k)*2^k/(Factorial(k)*Factorial(n-k)): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 14 2015
  • Maple
    seq(seq((2*n-k)!*2^k/(k!*(n-k)!),k=0..n),n=0..10); # Robert Israel, Sep 26 2017
  • Mathematica
    y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := 2^n*Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 8}, {k, n, 0, -1}] // Flatten (* or *) t[n_, k_] := (2*n - k)!*2^k/(k!*(n-k)!); Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
    Table[((2n-k)!*2^k)/(k!(n-k)!),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Nov 23 2017 *)

Formula

T(n,k) = (2n-k)!*2^k/(k!*(n-k)!).

A001147 Double factorial of odd numbers: a(n) = (2*n-1)!! = 1*3*5*...*(2*n-1).

Original entry on oeis.org

1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075, 13749310575, 316234143225, 7905853580625, 213458046676875, 6190283353629375, 191898783962510625, 6332659870762850625, 221643095476699771875, 8200794532637891559375, 319830986772877770815625
Offset: 0

Keywords

Comments

The solution to Schröder's third problem.
Number of fixed-point-free involutions in symmetric group S_{2n} (cf. A000085).
a(n-2) is the number of full Steiner topologies on n points with n-2 Steiner points. [corrected by Lyle Ramshaw, Jul 20 2022]
a(n) is also the number of perfect matchings in the complete graph K(2n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 25 2001
Number of ways to choose n disjoint pairs of items from 2*n items. - Ron Zeno (rzeno(AT)hotmail.com), Feb 06 2002
Number of ways to choose n-1 disjoint pairs of items from 2*n-1 items (one item remains unpaired). - Bartosz Zoltak, Oct 16 2012
For n >= 1 a(n) is the number of permutations in the symmetric group S_(2n) whose cycle decomposition is a product of n disjoint transpositions. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001
a(n) is the number of distinct products of n+1 variables with commutative, nonassociative multiplication. - Andrew Walters (awalters3(AT)yahoo.com), Jan 17 2004. For example, a(3)=15 because the product of the four variables w, x, y and z can be constructed in exactly 15 ways, assuming commutativity but not associativity: 1. w(x(yz)) 2. w(y(xz)) 3. w(z(xy)) 4. x(w(yz)) 5. x(y(wz)) 6. x(z(wy)) 7. y(w(xz)) 8. y(x(wz)) 9. y(z(wx)) 10. z(w(xy)) 11. z(x(wy)) 12. z(y(wx)) 13. (wx)(yz) 14. (wy)(xz) 15. (wz)(xy).
a(n) = E(X^(2n)), where X is a standard normal random variable (i.e., X is normal with mean = 0, variance = 1). So for instance a(3) = E(X^6) = 15, etc. See Abramowitz and Stegun or Hoel, Port and Stone. - Jerome Coleman, Apr 06 2004
Second Eulerian transform of 1,1,1,1,1,1,... The second Eulerian transform transforms a sequence s to a sequence t by the formula t(n) = Sum_{k=0..n} E(n,k)s(k), where E(n,k) is a second-order Eulerian number (A008517). - Ross La Haye, Feb 13 2005
Integral representation as n-th moment of a positive function on the positive axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/2)/sqrt(2*Pi*x) dx, n >= 0. - Karol A. Penson, Oct 10 2005
a(n) is the number of binary total partitions of n+1 (each non-singleton block must be partitioned into exactly two blocks) or, equivalently, the number of unordered full binary trees with n+1 labeled leaves (Stanley, ex 5.2.6). - Mitch Harris, Aug 01 2006
a(n) is the Pfaffian of the skew-symmetric 2n X 2n matrix whose (i,j) entry is i for iDavid Callan, Sep 25 2006
a(n) is the number of increasing ordered rooted trees on n+1 vertices where "increasing" means the vertices are labeled 0,1,2,...,n so that each path from the root has increasing labels. Increasing unordered rooted trees are counted by the factorial numbers A000142. - David Callan, Oct 26 2006
Number of perfect multi Skolem-type sequences of order n. - Emeric Deutsch, Nov 24 2006
a(n) = total weight of all Dyck n-paths (A000108) when each path is weighted with the product of the heights of the terminal points of its upsteps. For example with n=3, the 5 Dyck 3-paths UUUDDD, UUDUDD, UUDDUD, UDUUDD, UDUDUD have weights 1*2*3=6, 1*2*2=4, 1*2*1=2, 1*1*2=2, 1*1*1=1 respectively and 6+4+2+2+1=15. Counting weights by height of last upstep yields A102625. - David Callan, Dec 29 2006
a(n) is the number of increasing ternary trees on n vertices. Increasing binary trees are counted by ordinary factorials (A000142) and increasing quaternary trees by triple factorials (A007559). - David Callan, Mar 30 2007
From Tom Copeland, Nov 13 2007, clarified in first and extended in second paragraph, Jun 12 2021: (Start)
a(n) has the e.g.f. (1-2x)^(-1/2) = 1 + x + 3*x^2/2! + ..., whose reciprocal is (1-2x)^(1/2) = 1 - x - x^2/2! - 3*x^3/3! - ... = b(0) - b(1)*x - b(2)*x^2/2! - ... with b(0) = 1 and b(n+1) = -a(n) otherwise. By the formalism of A133314, Sum_{k=0..n} binomial(n,k)*b(k)*a(n-k) = 0^n where 0^0 := 1. In this sense, the sequence a(n) is essentially self-inverse. See A132382 for an extension of this result. See A094638 for interpretations.
This sequence aerated has the e.g.f. e^(t^2/2) = 1 + t^2/2! + 3*t^4/4! + ... = c(0) + c(1)*t + c(2)*t^2/2! + ... and the reciprocal e^(-t^2/2); therefore, Sum_{k=0..n} cos(Pi k/2)*binomial(n,k)*c(k)*c(n-k) = 0^n; i.e., the aerated sequence is essentially self-inverse. Consequently, Sum_{k=0..n} (-1)^k*binomial(2n,2k)*a(k)*a(n-k) = 0^n. (End)
From Ross Drewe, Mar 16 2008: (Start)
This is also the number of ways of arranging the elements of n distinct pairs, assuming the order of elements is significant but the pairs are not distinguishable, i.e., arrangements which are the same after permutations of the labels are equivalent.
If this sequence and A000680 are denoted by a(n) and b(n) respectively, then a(n) = b(n)/n! where n! = the number of ways of permuting the pair labels.
For example, there are 90 ways of arranging the elements of 3 pairs [1 1], [2 2], [3 3] when the pairs are distinguishable: A = { [112233], [112323], ..., [332211] }.
By applying the 6 relabeling permutations to A, we can partition A into 90/6 = 15 subsets: B = { {[112233], [113322], [221133], [223311], [331122], [332211]}, {[112323], [113232], [221313], [223131], [331212], [332121]}, ....}
Each subset or equivalence class in B represents a unique pattern of pair relationships. For example, subset B1 above represents {3 disjoint pairs} and subset B2 represents {1 disjoint pair + 2 interleaved pairs}, with the order being significant (contrast A132101). (End)
A139541(n) = a(n) * a(2*n). - Reinhard Zumkeller, Apr 25 2008
a(n+1) = Sum_{j=0..n} A074060(n,j) * 2^j. - Tom Copeland, Sep 01 2008
From Emeric Deutsch, Jun 05 2009: (Start)
a(n) is the number of adjacent transpositions in all fixed-point-free involutions of {1,2,...,2n}. Example: a(2)=3 because in 2143=(12)(34), 3412=(13)(24), and 4321=(14)(23) we have 2 + 0 + 1 adjacent transpositions.
a(n) = Sum_{k>=0} k*A079267(n,k).
(End)
Hankel transform is A137592. - Paul Barry, Sep 18 2009
(1, 3, 15, 105, ...) = INVERT transform of A000698 starting (1, 2, 10, 74, ...). - Gary W. Adamson, Oct 21 2009
a(n) = (-1)^(n+1)*H(2*n,0), where H(n,x) is the probabilists' Hermite polynomial. The generating function for the probabilists' Hermite polynomials is as follows: exp(x*t-t^2/2) = Sum_{i>=0} H(i,x)*t^i/i!. - Leonid Bedratyuk, Oct 31 2009
The Hankel transform of a(n+1) is A168467. - Paul Barry, Dec 04 2009
Partial products of odd numbers. - Juri-Stepan Gerasimov, Oct 17 2010
See A094638 for connections to differential operators. - Tom Copeland, Sep 20 2011
a(n) is the number of subsets of {1,...,n^2} that contain exactly k elements from {1,...,k^2} for k=1,...,n. For example, a(3)=15 since there are 15 subsets of {1,2,...,9} that satisfy the conditions, namely, {1,2,5}, {1,2,6}, {1,2,7}, {1,2,8}, {1,2,9}, {1,3,5}, {1,3,6}, {1,3,7}, {1,3,8}, {1,3,9}, {1,4,5}, {1,4,6}, {1,4,7}, {1,4,8}, and {1,4,9}. - Dennis P. Walsh, Dec 02 2011
a(n) is the leading coefficient of the Bessel polynomial y_n(x) (cf. A001498). - Leonid Bedratyuk, Jun 01 2012
For n>0: a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = min(i,j)^2 for 1 <= i,j <= n. - Enrique Pérez Herrero, Jan 14 2013
a(n) is also the numerator of the mean value from 0 to Pi/2 of sin(x)^(2n). - Jean-François Alcover, Jun 13 2013
a(n) is the size of the Brauer monoid on 2n points (see A227545). - James Mitchell, Jul 28 2013
For n>1: a(n) is the numerator of M(n)/M(1) where the numbers M(i) have the property that M(n+1)/M(n) ~ n-1/2 (for example, large Kendell-Mann numbers, see A000140 or A181609, as n --> infinity). - Mikhail Gaichenkov, Jan 14 2014
a(n) = the number of upper-triangular matrix representations required for the symbolic representation of a first order central moment of the multivariate normal distribution of dimension 2(n-1), i.e., E[X_1*X_2...*X_(2n-2)|mu=0, Sigma]. See vignette for symmoments R package on CRAN and Phillips reference below. - Kem Phillips, Aug 10 2014
For n>1: a(n) is the number of Feynman diagrams of order 2n (number of internal vertices) for the vacuum polarization with one charged loop only, in quantum electrodynamics. - Robert Coquereaux, Sep 15 2014
Aerated with intervening zeros (1,0,1,0,3,...) = a(n) (cf. A123023), the e.g.f. is e^(t^2/2), so this is the base for the Appell sequence A099174 with e.g.f. e^(t^2/2) e^(x*t) = exp(P(.,x),t) = unsigned A066325(x,t), the probabilist's (or normalized) Hermite polynomials. P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for A066325(x,t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), where UP(n,t) are the polynomials of A066325 and, e.g., (P(.,t))^n = P(n,t). - Tom Copeland, Nov 15 2014
a(n) = the number of relaxed compacted binary trees of right height at most one of size n. A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. The number of unbounded relaxed compacted binary trees of size n is A082161(n). See the Genitrini et al. link. - Michael Wallner, Jun 20 2017
Also the number of distinct adjacency matrices in the n-ladder rung graph. - Eric W. Weisstein, Jul 22 2017
From Christopher J. Smyth, Jan 26 2018: (Start)
a(n) = the number of essentially different ways of writing a probability distribution taking n+1 values as a sum of products of binary probability distributions. See comment of Mitch Harris above. This is because each such way corresponds to a full binary tree with n+1 leaves, with the leaves labeled by the values. (This comment is due to Niko Brummer.)
Also the number of binary trees with root labeled by an (n+1)-set S, its n+1 leaves by the singleton subsets of S, and other nodes labeled by subsets T of S so that the two daughter nodes of the node labeled by T are labeled by the two parts of a 2-partition of T. This also follows from Mitch Harris' comment above, since the leaf labels determine the labels of the other vertices of the tree.
(End)
a(n) is the n-th moment of the chi-squared distribution with one degree of freedom (equivalent to Coleman's Apr 06 2004 comment). - Bryan R. Gillespie, Mar 07 2021
Let b(n) = 0 for n odd and b(2k) = a(k); i.e., let the sequence b(n) be an aerated version of this entry. After expanding the differential operator (x + D)^n and normal ordering the resulting terms, the integer coefficient of the term x^k D^m is n! b(n-k-m) / [(n-k-m)! k! m!] with 0 <= k,m <= n and (k+m) <= n. E.g., (x+D)^2 = x^2 + 2xD + D^2 + 1 with D = d/dx. The result generalizes to the raising (R) and lowering (L) operators of any Sheffer polynomial sequence by replacing x by R and D by L and follows from the disentangling relation e^{t(L+R)} = e^{t^2/2} e^{tR} e^{tL}. Consequently, these are also the coefficients of the reordered 2^n permutations of the binary symbols L and R under the condition LR = RL + 1. E.g., (L+R)^2 = LL + LR + RL + RR = LL + 2RL + RR + 1. (Cf. A344678.) - Tom Copeland, May 25 2021
From Tom Copeland, Jun 14 2021: (Start)
Lando and Zvonkin present several scenarios in which the double factorials occur in their role of enumerating perfect matchings (pairings) and as the nonzero moments of the Gaussian e^(x^2/2).
Speyer and Sturmfels (p. 6) state that the number of facets of the abstract simplicial complex known as the tropical Grassmannian G'''(2,n), the space of phylogenetic T_n trees (see A134991), or Whitehouse complex is a shifted double factorial.
These are also the unsigned coefficients of the x[2]^m terms in the partition polynomials of A134685 for compositional inversion of e.g.f.s, a refinement of A134991.
a(n)*2^n = A001813(n) and A001813(n)/(n+1)! = A000108(n), the Catalan numbers, the unsigned coefficients of the x[2]^m terms in the partition polynomials A133437 for compositional inversion of o.g.f.s, a refinement of A033282, A126216, and A086810. Then the double factorials inherit a multitude of analytic and combinatoric interpretations from those of the Catalan numbers, associahedra, and the noncrossing partitions of A134264 with the Catalan numbers as unsigned-row sums. (End)
Connections among the Catalan numbers A000108, the odd double factorials, values of the Riemann zeta function and its derivative for integer arguments, and series expansions of the reduced action for the simple harmonic oscillator and the arc length of the spiral of Archimedes are given in the MathOverflow post on the Riemann zeta function. - Tom Copeland, Oct 02 2021
b(n) = a(n) / (n! 2^n) = Sum_{k = 0..n} (-1)^n binomial(n,k) (-1)^k a(k) / (k! 2^k) = (1-b.)^n, umbrally; i.e., the normalized double factorial a(n) is self-inverse under the binomial transform. This can be proved by applying the Euler binomial transformation for o.g.f.s Sum_{n >= 0} (1-b.)^n x^n = (1/(1-x)) Sum_{n >= 0} b_n (x / (x-1))^n to the o.g.f. (1-x)^{-1/2} = Sum_{n >= 0} b_n x^n. Other proofs are suggested by the discussion in Watson on pages 104-5 of transformations of the Bessel functions of the first kind with b(n) = (-1)^n binomial(-1/2,n) = binomial(n-1/2,n) = (2n)! / (n! 2^n)^2. - Tom Copeland, Dec 10 2022

Examples

			a(3) = 1*3*5 = 15.
From _Joerg Arndt_, Sep 10 2013: (Start)
There are a(3)=15 involutions of 6 elements without fixed points:
  #:    permutation           transpositions
  01:  [ 1 0 3 2 5 4 ]      (0, 1) (2, 3) (4, 5)
  02:  [ 1 0 4 5 2 3 ]      (0, 1) (2, 4) (3, 5)
  03:  [ 1 0 5 4 3 2 ]      (0, 1) (2, 5) (3, 4)
  04:  [ 2 3 0 1 5 4 ]      (0, 2) (1, 3) (4, 5)
  05:  [ 2 4 0 5 1 3 ]      (0, 2) (1, 4) (3, 5)
  06:  [ 2 5 0 4 3 1 ]      (0, 2) (1, 5) (3, 4)
  07:  [ 3 2 1 0 5 4 ]      (0, 3) (1, 2) (4, 5)
  08:  [ 3 4 5 0 1 2 ]      (0, 3) (1, 4) (2, 5)
  09:  [ 3 5 4 0 2 1 ]      (0, 3) (1, 5) (2, 4)
  10:  [ 4 2 1 5 0 3 ]      (0, 4) (1, 2) (3, 5)
  11:  [ 4 3 5 1 0 2 ]      (0, 4) (1, 3) (2, 5)
  12:  [ 4 5 3 2 0 1 ]      (0, 4) (1, 5) (2, 3)
  13:  [ 5 2 1 4 3 0 ]      (0, 5) (1, 2) (3, 4)
  14:  [ 5 3 4 1 2 0 ]      (0, 5) (1, 3) (2, 4)
  15:  [ 5 4 3 2 1 0 ]      (0, 5) (1, 4) (2, 3)
(End)
G.f. = 1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 945*x^5 + 10395*x^6 + 135135*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, (26.2.28).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 317.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 228, #19.
  • Hoel, Port and Stone, Introduction to Probability Theory, Section 7.3.
  • F. K. Hwang, D. S. Richards and P. Winter, The Steiner Tree Problem, North-Holland, 1992, see p. 14.
  • C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.6 and also p. 178.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer-Verlag, New York, 1999, p. 73.
  • G. Watson, The Theory of Bessel Functions, Cambridge Univ. Press, 1922.

Crossrefs

Cf. A086677; A055142 (for this sequence, |a(n+1)| + 1 is the number of distinct products which can be formed using commutative, nonassociative multiplication and a nonempty subset of n given variables).
Constant terms of polynomials in A098503. First row of array A099020.
Subsequence of A248652.
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A053871 (binomial transform).

Programs

  • GAP
    A001147 := function(n) local i, s, t; t := 1; i := 0; Print(t, ", "); for i in [1 .. n] do t := t*(2*i-1); Print(t, ", "); od; end; A001147(100); # Stefano Spezia, Nov 13 2018
    
  • Haskell
    a001147 n = product [1, 3 .. 2 * n - 1]
    a001147_list = 1 : zipWith (*) [1, 3 ..] a001147_list
    -- Reinhard Zumkeller, Feb 15 2015, Dec 03 2011
    
  • Magma
    A001147:=func< n | n eq 0 select 1 else &*[ k: k in [1..2*n-1 by 2] ] >; [ A001147(n): n in [0..20] ]; // Klaus Brockhaus, Jun 22 2011
    
  • Magma
    I:=[1,3]; [1] cat [n le 2 select I[n]  else (3*n-2)*Self(n-1)-(n-1)*(2*n-3)*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 19 2015
    
  • Maple
    f := n->(2*n)!/(n!*2^n);
    A001147 := proc(n) doublefactorial(2*n-1); end: # R. J. Mathar, Jul 04 2009
    A001147 := n -> 2^n*pochhammer(1/2, n); # Peter Luschny, Aug 09 2009
    G(x):=(1-2*x)^(-1/2): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009; aligned with offset by Johannes W. Meijer, Aug 11 2009
    series(hypergeom([1,1/2],[],2*x),x=0,20); # Mark van Hoeij, Apr 07 2013
  • Mathematica
    Table[(2 n - 1)!!, {n, 0, 19}] (* Robert G. Wilson v, Oct 12 2005 *)
    a[ n_] := 2^n Gamma[n + 1/2] / Gamma[1/2]; (* Michael Somos, Sep 18 2014 *)
    Join[{1}, Range[1, 41, 2]!!] (* Harvey P. Dale, Jan 28 2017 *)
    a[ n_] := If[ n < 0, (-1)^n / a[-n], SeriesCoefficient[ Product[1 - (1 - x)^(2 k - 1), {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 27 2017 *)
    (2 Range[0, 20] - 1)!! (* Eric W. Weisstein, Jul 22 2017 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(sum(binomial(n-1,i)*binomial(n-i-1,j)*a(i)*a(j)*a(n-i-j-1),j,0,n-i-1),i,0,n-1); /* Vladimir Kruchinin, May 06 2020 */
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), (2*n)! / n! / 2^n)}; /* Michael Somos, Sep 18 2014 */
    
  • PARI
    x='x+O('x^33); Vec(serlaplace((1-2*x)^(-1/2))) \\ Joerg Arndt, Apr 24 2011
    
  • Python
    from sympy import factorial2
    def a(n): return factorial2(2 * n - 1)
    print([a(n) for n in range(101)])  # Indranil Ghosh, Jul 22 2017
    
  • Sage
    [rising_factorial(n+1,n)/2^n for n in (0..15)] # Peter Luschny, Jun 26 2012
    

Formula

E.g.f.: 1 / sqrt(1 - 2*x).
D-finite with recurrence: a(n) = a(n-1)*(2*n-1) = (2*n)!/(n!*2^n) = A010050(n)/A000165(n).
a(n) ~ sqrt(2) * 2^n * (n/e)^n.
Rational part of numerator of Gamma(n+1/2): a(n) * sqrt(Pi) / 2^n = Gamma(n+1/2). - Yuriy Brun, Ewa Dominowska (brun(AT)mit.edu), May 12 2001
With interpolated zeros, the sequence has e.g.f. exp(x^2/2). - Paul Barry, Jun 27 2003
The Ramanujan polynomial psi(n+1, n) has value a(n). - Ralf Stephan, Apr 16 2004
a(n) = Sum_{k=0..n} (-2)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
Log(1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 945*x^5 + 10395*x^6 + ...) = x + 5/2*x^2 + 37/3*x^3 + 353/4*x^4 + 4081/5*x^5 + 55205/6*x^6 + ..., where [1, 5, 37, 353, 4081, 55205, ...] = A004208. - Philippe Deléham, Jun 20 2006
1/3 + 2/15 + 3/105 + ... = 1/2. [Jolley eq. 216]
Sum_{j=1..n} j/a(j+1) = (1 - 1/a(n+1))/2. [Jolley eq. 216]
1/1 + 1/3 + 2/15 + 6/105 + 24/945 + ... = Pi/2. - Gary W. Adamson, Dec 21 2006
a(n) = (1/sqrt(2*Pi))*Integral_{x>=0} x^n*exp(-x/2)/sqrt(x). - Paul Barry, Jan 28 2008
a(n) = A006882(2n-1). - R. J. Mathar, Jul 04 2009
G.f.: 1/(1-x-2x^2/(1-5x-12x^2/(1-9x-30x^2/(1-13x-56x^2/(1- ... (continued fraction). - Paul Barry, Sep 18 2009
a(n) = (-1)^n*subs({log(e)=1,x=0},coeff(simplify(series(e^(x*t-t^2/2),t,2*n+1)),t^(2*n))*(2*n)!). - Leonid Bedratyuk, Oct 31 2009
a(n) = 2^n*gamma(n+1/2)/gamma(1/2). - Jaume Oliver Lafont, Nov 09 2009
G.f.: 1/(1-x/(1-2x/(1-3x/(1-4x/(1-5x/(1- ...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
The g.f. of a(n+1) is 1/(1-3x/(1-2x/(1-5x/(1-4x/(1-7x/(1-6x/(1-.... (continued fraction). - Paul Barry, Dec 04 2009
a(n) = Sum_{i=1..n} binomial(n,i)*a(i-1)*a(n-i). - Vladimir Shevelev, Sep 30 2010
E.g.f.: A(x) = 1 - sqrt(1-2*x) satisfies the differential equation A'(x) - A'(x)*A(x) - 1 = 0. - Vladimir Kruchinin, Jan 17 2011
a(n) = A123023(2*n). - Michael Somos, Jul 24 2011
a(n) = (1/2)*Sum_{i=1..n} binomial(n+1,i)*a(i-1)*a(n-i). See link above. - Dennis P. Walsh, Dec 02 2011
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n,n+k)*Stirling_1(n+k,k) [Kauers and Ko].
a(n) = A035342(n, 1), n >= 1 (first column of triangle).
a(n) = A001497(n, 0) = A001498(n, n), first column, resp. main diagonal, of Bessel triangle.
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n and sum of top row terms of M^(n-1), where M = a variant of the (1,2) Pascal triangle (Cf. A029635) as the following production matrix:
1, 2, 0, 0, 0, ...
1, 3, 2, 0, 0, ...
1, 4, 5, 2, 0, ...
1, 5, 9, 7, 2, ...
...
For example, a(3) = 15 is the left term in top row of M^3: (15, 46, 36, 8) and a(4) = 105 = (15 + 46 + 36 + 8).
(End)
G.f.: A(x) = 1 + x/(W(0) - x); W(k) = 1 + x + x*2*k - x*(2*k + 3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2011
a(n) = Sum_{i=1..n} binomial(n,i-1)*a(i-1)*a(n-i). - Dennis P. Walsh, Dec 02 2011
a(n) = A009445(n) / A014481(n). - Reinhard Zumkeller, Dec 03 2011
a(n) = (-1)^n*Sum_{k=0..n} 2^(n-k)*s(n+1,k+1), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = (2*n)4! = Gauss_factorial(2*n,4) = Product{j=1..2*n, gcd(j,4)=1} j. - Peter Luschny, Oct 01 2012
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k - 1)/(1 - x*(2*k + 2)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1 + x/Q(0), where Q(k) = 1 + (2*k - 1)*x - 2*x*(k + 1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k + 1)/(2*x*(2*k + 1) - 1 + 2*x*(2*k + 2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(2*k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: G(0), where G(k) = 1 + 2*x*(4*k + 1)/(4*k + 2 - 2*x*(2*k + 1)*(4*k + 3)/(x*(4*k + 3) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
a(n) = (2*n - 3)*a(n-2) + (2*n - 2)*a(n-1), n > 1. - Ivan N. Ianakiev, Jul 08 2013
G.f.: G(0), where G(k) = 1 - x*(k+1)/(x*(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 04 2013
a(n) = 2*a(n-1) + (2n-3)^2*a(n-2), a(0) = a(1) = 1. - Philippe Deléham, Oct 27 2013
G.f. of reciprocals: Sum_{n>=0} x^n/a(n) = 1F1(1; 1/2; x/2), confluent hypergeometric Function. - R. J. Mathar, Jul 25 2014
0 = a(n)*(+2*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Sep 18 2014
a(n) = (-1)^n / a(-n) = 2*a(n-1) + a(n-1)^2 / a(n-2) for all n in Z. - Michael Somos, Sep 18 2014
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 2)*a(n-1) - (n - 1)*(2*n - 3)*a(n-2) with a(1) = 1 and a(2) = 3.
The sequence b(n) = A087547(n), beginning [1, 4, 52, 608, 12624, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion lim_{n -> infinity} b(n)/a(n) = Pi/2 = 1 + 1/(3 - 6/(7 - 15/(10 - ... - n*(2*n - 1)/((3*n + 1) - ... )))). (End)
E.g.f of the sequence whose n-th element (n = 1,2,...) equals a(n-1) is 1-sqrt(1-2*x). - Stanislav Sykora, Jan 06 2017
Sum_{n >= 1} a(n)/(2*n-1)! = exp(1/2). - Daniel Suteu, Feb 06 2017
a(n) = A028338(n, 0), n >= 0. - Wolfdieter Lang, May 27 2017
a(n) = (Product_{k=0..n-2} binomial(2*(n-k),2))/n!. - Stefano Spezia, Nov 13 2018
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-1} C(n-1,i)*C(n-i-1,j)*a(i)*a(j)*a(n-i-j-1), a(0)=1, - Vladimir Kruchinin, May 06 2020
From Amiram Eldar, Jun 29 2020: (Start)
Sum_{n>=1} 1/a(n) = sqrt(e*Pi/2)*erf(1/sqrt(2)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(Pi/(2*e))*erfi(1/sqrt(2)), where erfi is the imaginary error function. (End)
G.f. of reciprocals: R(x) = Sum_{n>=0} x^n/a(n) satisfies (1 + x)*R(x) = 1 + 2*x*R'(x). - Werner Schulte, Nov 04 2024

Extensions

Removed erroneous comments: neither the number of n X n binary matrices A such that A^2 = 0 nor the number of simple directed graphs on n vertices with no directed path of length two are counted by this sequence (for n = 3, both are 13). - Dan Drake, Jun 02 2009

A008279 Triangle T(n,k) = n!/(n-k)! (0 <= k <= n) read by rows, giving number of permutations of n things k at a time.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 12, 24, 24, 1, 5, 20, 60, 120, 120, 1, 6, 30, 120, 360, 720, 720, 1, 7, 42, 210, 840, 2520, 5040, 5040, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880
Offset: 0

Comments

Also called permutation coefficients.
Also falling factorials triangle A068424 with column a(n,0)=1 and row a(0,1)=1 otherwise a(0,k)=0, added. - Wolfdieter Lang, Nov 07 2003
The higher-order exponential integrals E(x,m,n) are defined in A163931; for information about the asymptotic expansion of E(x,m=1,n) see A130534. The asymptotic expansions for n = 1, 2, 3, 4, ..., lead to the right hand columns of the triangle given above. - Johannes W. Meijer, Oct 16 2009
The number of injective functions from a set of size k to a set of size n. - Dennis P. Walsh, Feb 10 2011
The number of functions f from {1,2,...,k} to {1,2,...,n} that satisfy f(x) >= x for all x in {1,2,...,k}. - Dennis P. Walsh, Apr 20 2011
T(n,k) = A181511(n,k) for k=1..n-1. - Reinhard Zumkeller, Nov 18 2012
The e.g.f.s enumerating the faces of the permutohedra / permutahedra, Perm(s,t;x) = [e^(sx)-1]/[s-t(e^(sx)-1)], (cf. A090582 and A019538) and the stellahedra / stellohedra, St(s,t;x) = [s e^((s+t)x)]/[s-t(e^(sx)-1)], (cf. A248727) given in Toric Topology satisfy exp[u*d/dt] St(s,t;x) = St(s,u+t;x) = [e^(ux)/(1-u*Perm(s,t;x))]*St(s,t;x), where e^(ux)/(1-uy) is a bivariate e.g.f. for the row polynomials of this entry and A094587. Equivalently, d/dt St = (x+Perm)*St and d/dt Perm = Perm^2, or d/dt log(St) = x + Perm and d/dt log(Perm) = Perm. - Tom Copeland, Nov 14 2016
T(n, k)/n! are the coefficients of the n-th exponential Taylor polynomial, or truncated exponentials, which was proved to be irreducible by Schur. See Coleman link. - Michel Marcus, Feb 24 2020
Given a generic choice of k+2 residues, T(n, k) is the number of meromorphic differentials on the Riemann sphere having a zero of order n and these prescribed residues at its k+2 poles. - Quentin Gendron, Jan 16 2025

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  2;
  1,  3,  6,   6;
  1,  4, 12,  24,   24;
  1,  5, 20,  60,  120,   120;
  1,  6, 30, 120,  360,   720,    720;
  1,  7, 42, 210,  840,  2520,   5040,   5040;
  1,  8, 56, 336, 1680,  6720,  20160,  40320,   40320;
  1,  9, 72, 504, 3024, 15120,  60480, 181440,  362880,  362880;
  1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800;
  ...
For example, T(4,2)=12 since there are 12 injective functions f:{1,2}->{1,2,3,4}. There are 4 choices for f(1) and then, since f is injective, 3 remaining choices for f(2), giving us 12 ways to construct an injective function. - _Dennis P. Walsh_, Feb 10 2011
For example, T(5,3)=60 since there are 60 functions f:{1,2,3}->{1,2,3,4,5} with f(x) >= x. There are 5 choices for f(1), 4 choices for f(2), and 3 choices for f(3), giving us 60 ways to construct such a function. - _Dennis P. Walsh_, Apr 30 2011
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 176; 31st ed., p. 215, Section 3.3.11.1.
  • Maple V Reference Manual, p. 490, numbperm(n,k).

Crossrefs

Row sums give A000522.
T(n,0)=A000012, T(n,1)=A000027, T(n+1,2)=A002378, T(n,3)=A007531, T(n,4)=A052762, and T(n,n)=A000142.

Programs

  • Haskell
    a008279 n k = a008279_tabl !! n !! k
    a008279_row n = a008279_tabl !! n
    a008279_tabl = iterate f [1] where
       f xs = zipWith (+) ([0] ++ zipWith (*) xs [1..]) (xs ++ [0])
    -- Reinhard Zumkeller, Dec 15 2013, Nov 18 2012
    
  • Magma
    /* As triangle */ [[Factorial(n)/Factorial(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 11 2015
    
  • Maple
    with(combstruct): for n from 0 to 10 do seq(count(Permutation(n),size=m), m = 0 .. n) od; # Zerinvary Lajos, Dec 16 2007
    seq(seq(n!/(n-k)!,k=0..n),n=0..10); # Dennis P. Walsh, Apr 20 2011
    seq(print(seq(pochhammer(n-k+1,k),k=0..n)),n=0..6); # Peter Luschny, Mar 26 2015
  • Mathematica
    Table[CoefficientList[Series[(1 + x)^m, {x, 0, 20}], x]* Table[n!, {n, 0, m}], {m, 0, 10}] // Grid (* Geoffrey Critzer, Mar 16 2010 *)
    Table[ Pochhammer[n - k + 1, k], {n, 0, 9}, {k, 0, n}] // Flatten (* or *)
    Table[ FactorialPower[n, k], {n, 0, 9}, {k, 0, n}] // Flatten  (* Jean-François Alcover, Jul 18 2013, updated Jan 28 2016 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n!/(n-k)!)}; /* Michael Somos, Nov 14 2002 */
    
  • PARI
    {T(n, k) = my(A, p); if( k<0 || k>n, 0, if( n==0, 1, A = matrix(n, n, i, j, x + (i==j)); polcoeff( sum(i=1, n!, if( p = numtoperm(n, i), prod(j=1, n, A[j, p[j]]))), k)))}; /* Michael Somos, Mar 05 2004 */
    
  • Python
    from math import factorial, isqrt, comb
    def A008279(n): return factorial(a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))//factorial(a-n+comb(a+1,2)) # Chai Wah Wu, Nov 13 2024
  • Sage
    for n in range(8): [falling_factorial(n,k) for k in (0..n)] # Peter Luschny, Mar 26 2015
    

Formula

E.g.f.: Sum T(n,k) x^n/n! y^k = exp(x)/(1-x*y). - Vladeta Jovovic, Aug 19 2002
Equals A007318 * A136572. - Gary W. Adamson, Jan 07 2008
T(n, k) = n*T(n-1, k-1) = k*T(n-1, k-1)+T(n-1, k) = n*T(n-1, k)/(n-k) = (n-k+1)*T(n, k-1). - Henry Bottomley, Mar 29 2001
T(n, k) = n!/(n-k)! if n >= k >= 0, otherwise 0.
G.f. for k-th column k!*x^k/(1-x)^(k+1), k >= 0.
E.g.f. for n-th row (1+x)^n, n >= 0.
Sum T(n, k)x^k = permanent of n X n matrix a_ij = (x+1 if i=j, x otherwise). - Michael Somos, Mar 05 2004
Ramanujan psi_1(k, x) polynomials evaluated at n+1. - Ralf Stephan, Apr 16 2004
E.g.f.: Sum T(n,k) x^n/n! y^k/k! = e^{x+xy}. - Franklin T. Adams-Watters, Feb 07 2006
The triangle is the binomial transform of an infinite matrix with (1, 1, 2, 6, 24, ...) in the main diagonal and the rest zeros. - Gary W. Adamson, Nov 20 2006
G.f.: 1/(1-x-xy/(1-xy/(1-x-2xy/(1-2xy/(1-x-3xy/(1-3xy/(1-x-4xy/(1-4xy/(1-... (continued fraction). - Paul Barry, Feb 11 2009
T(n,k) = Sum_{j=0..k} binomial(k,j)*T(x,j)*T(y,k-j) for x+y = n. - Dennis P. Walsh, Feb 10 2011
From Dennis P. Walsh, Apr 20 2011: (Start)
E.g.f (with k fixed): x^k*exp(x).
G.f. (with k fixed): k!*x^k/(1-x)^(k+1). (End)
For n >= 2 and m >= 2, Sum_{k=0..m-2} S2(n, k+2)*T(m-2, k) = Sum_{p=0..n-2} m^p. S2(n,k) are the Stirling numbers of the second kind A008277. - Tony Foster III, Jul 23 2019

A001515 Bessel polynomial y_n(x) evaluated at x=1.

Original entry on oeis.org

1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0

Keywords

Comments

For some applications it is better to start this sequence with an extra 1 at the beginning: 1, 1, 2, 37, 266, 2431, 27007, 353522, 5329837, ... (again with offset 0). This sequence now has its own entry - see A144301.
Number of partitions of {1,...,k}, n <= k <= 2n, into n blocks with no more than 2 elements per block. Restated, number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n sets, each having 1 or 2 elements. - Bob Proctor, Apr 18 2005, Jun 26 2006. E.g., for n=2 we get: (k=2): {1,2}; (k=3): {1,23}, {2,13}, {3,12}; (k=4): {12,34}, {13,24}, {14,23}, for a total of a(2) = 7 partitions.
Equivalently, number of sequences of n unlabeled items such that each item occurs just once or twice (cf. A105749). - David Applegate, Dec 08 2008
Numerator of (n+1)-th convergent to 1+tanh(1). - Benoit Cloitre, Dec 20 2002
The following Maple lines show how this sequence and A144505, A144498, A001514, A144513, A144506, A144514, A144507, A144301 are related.
f0:=proc(n) local k; add((n+k)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f0(n),n=0..10)];
# that is this sequence
f1:=proc(n) local k; add((n+k+1)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f1(n),n=0..10)];
# that is A144498
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..10)];
# that is A144513; divided by 2 gives A001514
f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..10)];
# that is A144514; divided by 6 gives A144506
f4:=proc(n) local k; add((n+k+4)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f4(n),n=0..10)];
# that divided by 24 gives A144507
a(n) is also the numerator of the continued fraction sequence beginning with 2 followed by 3 and the remaining odd numbers: [2,3,5,7,9,11,13,...]. - Gil Broussard, Oct 07 2009
Also, number of scenarios in the Gift Exchange Game when a gift can be stolen at most once. - N. J. A. Sloane, Jan 25 2017

Examples

			The first few Bessel polynomials are (cf. A001497, A001498):
  y_0 = 1
  y_1 = 1 +   x
  y_2 = 1 + 3*x +  3*x^2
  y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A144301 for other formulas and comments.
Row sums of Bessel triangle A001497 as well as of A001498.
Partial sums: A105748.
First differences: A144498.
Replace "sets" with "lists" in comment: A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.

Programs

  • Haskell
    a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    [(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
    
  • Maple
    A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
    A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
    A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
    Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
    
  • SageMath
    [sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

The following formulas can all be found in (or are easily derived from formulas in) Grosswald's book.
D-finite with recurrence: a(0) = 1, a(1) = 2; thereafter a(n) = (2*n-1)*a(n-1) + a(n-2).
E.g.f.: exp(1-sqrt(1-2*x))/sqrt(1-2*x).
a(n) = Sum_{ k = 0..n } binomial(n+k,2*k)*(2*k)!/(k!*2^k).
Equivalently, a(n) = Sum_{ k = 0..n } (n+k)!/((n-k)!*k!*2^k) = Sum_{ k = n..2n } k!/((2n-k)!*(k-n)!*2^(k-n)).
a(n) = Hypergeometric2F0( [n+1, -n] ; - ; -1/2).
a(n) = A105749(n)/n!.
a(n) ~ exp(1)*(2n)!/(n!*2^n) as n -> oo. [See Grosswald, p. 124]
a(n) = A144301(n+1).
G.f.: 1/(1-x-x/(1-x-2*x/(1-x-3*x/(1-x-4*x/(1-x-5*x/(1-.... (continued fraction). - Paul Barry, Feb 08 2009
From Michael Somos, Apr 08 2012: (Start)
a(-1 - n) = a(n).
(a(n+1) + a(n+2))^2 = a(n)*a(n+2) + a(n+1)*a(n+3) for all integer n. (End)
G.f.: 1/G(0) where G(k) = 1 - x - x*(2*k+1)/(1 - x - 2*x*(k+1)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2012
E.g.f.: E(0)/(2*sqrt(1-2*x)), where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)*(1+sqrt(1-2*x))/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
G.f.: T(0)/(1-x), where T(k) = 1 - (k+1)*x/((k+1)*x - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2013
a(n) = (2*BesselI(1/2, 1)+BesselI(3/2, 1))*BesselK(n+1/2, 1). - Jean-François Alcover, Feb 03 2014
a(n) = exp(1)*sqrt(2/Pi)*BesselK(1/2+n,1). - Gerry Martens, Jul 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n) = (1/n!)*Integral_{x = 0..inf} exp(-x)*x^n*(1 + x/2)^n dx.
E.g.f.: d/dx( exp(x*c(x/2)) ) = 1 + 2*x + 7*x^2/2! + 37*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 2^n * hypergeometric1f1(-n; -2*n; 2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 2*t/(1-t)^2). (End)

Extensions

Extensively edited by N. J. A. Sloane, Dec 07 2008
Showing 1-10 of 43 results. Next