Original entry on oeis.org
1, 4, 31, 361, 5626, 109951, 2585269, 71066626, 2236441141, 79289379361, 3127129674736, 135802922499949, 6439320471558781, 331026965612789356, 18338413238239145731, 1089132347371148170381, 69033182553940825258594, 4651256393180943757676371
Offset: 1
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-4*x)^(1/4)) -1 ))); // G. C. Greubel, Oct 02 2023
-
a[n_, m_] /; (n>= m>= 1):= a[n, m]= (4*(n-1)-m)*a[n-1,m] + a[n-1,m-1]; a[n_, m_] /; n,0]= 0; a[1,1] = 1; a[n]:= Sum[a[n,m], {m, n}]; Table[a[n], {n,20}] (* Jean-François Alcover, Feb 28 2013 *)
With[{nn=20},CoefficientList[Series[Exp[1-Surd[1-4x,4]]-1,{x,0,nn}],x] Range[0,nn]!]//Rest (* Harvey P. Dale, Apr 20 2016 *)
-
a(n):=((n-1)!*sum((sum(binomial(n+k-1,n-1)*sum(binomial(j,n-m-3*k+2*j)*binomial(k,j)*3^(-n+m+3*k-j)*2^(n-m-5*k+3*j)*(-1)^(n-m-k),j,0,k),k,1,n-m))/(m-1)!,m,1,n-1))+1; /* Vladimir Kruchinin, Oct 18 2011 */
-
def A016036_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(1-(1-4*x)^(1/4)) -1 ).egf_to_ogf().list()
a=A016036_list(40); a[1:] # G. C. Greubel, Oct 02 2023
A143173
Partition number array, called M32(-3), related to A000369(n,m) = |S2(-3;n,m)| (generalized Stirling triangle).
Original entry on oeis.org
1, 3, 1, 21, 9, 1, 231, 84, 27, 18, 1, 3465, 1155, 630, 210, 135, 30, 1, 65835, 20790, 10395, 4410, 3465, 3780, 405, 420, 405, 45, 1, 1514205, 460845, 218295, 169785, 72765, 72765, 30870, 19845, 8085, 13230, 2835, 735, 945, 63, 1, 40883535, 12113640, 5530140, 4074840
Offset: 1
a(4,3)=27. The relevant partition of 4 is (2^2). The 12 unordered (0,2,0,0)-forests are composed of the following 2 rooted increasing trees 1--2,3--4; 1--3,2--4 and 1--4,2--3. The trees are ternary because r=1 vertices are ternary (3-ary) and for the leaves (r=0) the arity does not matter. Each of the three differently labeled forests comes therefore in 4 versions due to the two ternary root vertices.
A143169
Fourth column of triangle A000369: |S2(-3;n+4,4)|.
Original entry on oeis.org
1, 30, 825, 24150, 775845, 27478710, 1069801425, 45547251750, 2108878296525, 105616706545350, 5693005525232025, 328784072492625750, 20261087389388971125, 1327378299252353097750, 92142485069345244158625, 6756933615539839013031750, 522007423480304780922028125
Offset: 0
A144279
Partition number array, called M32hat(-3)= 'M32(-3)/M3'= 'A143173/A036040', related to A000369(n,m)= |S2(-3;n,m)| (generalized Stirling triangle).
Original entry on oeis.org
1, 3, 1, 21, 3, 1, 231, 21, 9, 3, 1, 3465, 231, 63, 21, 9, 3, 1, 65835, 3465, 693, 441, 231, 63, 27, 21, 9, 3, 1, 1514205, 65835, 10395, 4851, 3465, 693, 441, 189, 231, 63, 27, 21, 9, 3, 1, 40883535, 1514205, 197505, 72765, 53361, 65835, 10395, 4851, 2079, 1323, 3465
Offset: 1
a(4,3) = 9 = |S2(-3,2,1)|^2. The relevant partition of 4 is (2^2).
A143167
Second column of triangle A000369: |S2(-3;n+2,2)|.
Original entry on oeis.org
1, 9, 111, 1785, 35595, 848925, 23586255, 748471185, 26715409875, 1059544210725, 46230843633975, 2201008238854425, 113546715232225275, 6309834090304870125, 375777507964741257375, 23876826206710426574625, 1612323634555365676819875
Offset: 0
-
f:= gfun:-rectoproc({a(n) = (8*n+1)*a(n-1) - 2*(4*n-1)*(2*n-1)*a(n-2),a(0)=1, a(1)=9}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Jan 09 2019
-
x = 'x + O('x^40); serlaplace((3 - 2*(1-4*x)^(1/4))/(1-4*x)^(7/4)) \\ Michel Marcus, Jun 18 2017
A143168
Third column of triangle A000369: |S2(-3; n+3, 3)|.
Original entry on oeis.org
1, 18, 345, 7650, 196245, 5755050, 190482705, 7034400450, 286988226525, 12826061498250, 623403611055225, 32747785180560450, 1849179329801929125, 111713055889014830250, 7190273917194645902625, 491244630824362410245250, 35508203161436371983742125
Offset: 0
A143170
Fifth column of triangle A000369: |S2(-3;n+5,5)|.
Original entry on oeis.org
1, 45, 1680, 62790, 2471175, 104085135, 4712781150, 229345716600, 11970744110325, 668241679730625, 39773331191493900, 2516317288024790250, 168723807382851595875, 11956978164372003637875, 893260022082269487896250, 70178395183380972653665500
Offset: 0
A132063
Alternating row sums of Jabotinsky type triangle S2p(-3):= A000369.
Original entry on oeis.org
1, 2, 13, 137, 1996, 37109, 838993, 22336292, 684256123, 23705447669, 916278718246, 39088637286467, 1824146816097373, 92434987026468722, 5054207258536066681, 296598839923053166109, 18593246768511584995468
Offset: 1
A008545
Quadruple factorial numbers: Product_{k=0..n-1} (4*k + 3).
Original entry on oeis.org
1, 3, 21, 231, 3465, 65835, 1514205, 40883535, 1267389585, 44358635475, 1729986783525, 74389431691575, 3496303289504025, 178311467764705275, 9807130727058790125, 578620712896468617375, 36453104912477522894625, 2442358029135994033939875
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f. = 1 + 3*x + 21*x^2 + 231*x^3 + 3465*x^4 + 65835*x^5 + 1514205*x^6 + ...
a(3) = sigma[4,3]^{3}_3 = 3*7*11 = 231. See the name. - _Wolfdieter Lang_, May 29 2017
a(n)=
A000369(n+1, 1) (first column of triangle).
-
List([0..20], n-> Product([0..n-1], k-> 4*k+3) ); # G. C. Greubel, Aug 18 2019
-
a008545 n = a008545_list !! n
a008545_list = scanl (*) 1 a004767_list
-- Reinhard Zumkeller, Oct 25 2013
-
[1] cat [(&*[4*k+3: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
-
f := n->product( (4*k-1),k=0..n);
A008545 := n -> mul(k, k = select(k-> k mod 4 = 3, [$1 .. 4*n])): seq(A008545(n), n=0..15); # Peter Luschny, Jun 23 2011
-
FoldList[Times, 1, 4 Range[0, 20] + 3] (* Harvey P. Dale, Jan 19 2013 *)
a[n_]:= Pochhammer[3/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
a[n_]:= If[n < 0, 1 / Product[ -k, {k, 1, -4 n - 3, 4}], Product[k, {k, 3, 4 n - 1, 4}]]; (* Michael Somos, Jan 17 2014 *)
-
a(n)=prod(k=0,n-1,4*k+3) \\ Charles R Greathouse IV, Jun 23 2011
-
{a(n) = if( n<0, 1 / prod(k=1, -n, 3 - 4*k), prod(k=1, n, 4*k - 1))}; /* Michael Somos, Jan 17 2014 */
-
[product(4*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
A105278
Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!.
Original entry on oeis.org
1, 2, 1, 6, 6, 1, 24, 36, 12, 1, 120, 240, 120, 20, 1, 720, 1800, 1200, 300, 30, 1, 5040, 15120, 12600, 4200, 630, 42, 1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1, 3628800, 16329600
Offset: 1
T(1,1) = C(1,1)*0!/0! = 1,
T(2,1) = C(2,1)*1!/0! = 2,
T(2,2) = C(2,2)*1!/1! = 1,
T(3,1) = C(3,1)*2!/0! = 6,
T(3,2) = C(3,2)*2!/1! = 6,
T(3,3) = C(3,3)*2!/2! = 1,
Sheffer a-sequence recurrence: T(6,2)= 1800 = (6/3)*120 + 6*240.
B(n,k) =
1/(1-x)^2;
2/(1-x)^3, 1/(1-x)^4;
6/(1-x)^4, 6/(1-x)^5, 1/(1-x)^6;
24/(1-x)^5, 36/(1-x)^6, 12/(1-x)^7, 1/(1-x)^8;
The triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9 ...
1: 1
2: 2 1
3: 6 6 1
4: 24 36 12 1
5: 120 240 120 20 1
6: 720 1800 1200 300 30 1
7: 5040 15120 12600 4200 630 42 1
8: 40320 141120 141120 58800 11760 1176 56 1
9: 362880 1451520 1693440 846720 211680 28224 2016 72 1
...
Row n=10: [3628800, 16329600, 21772800, 12700800, 3810240, 635040, 60480, 3240, 90, 1]. - _Wolfdieter Lang_, Feb 01 2013
From _Peter Bala_, Feb 24 2025: (Start)
The array factorizes as an infinite product (read from right to left):
/ 1 \ /1 \^m /1 \^m /1 \^m
| 2 1 | | 0 1 | |0 1 | |1 1 |
| 6 6 1 | = ...| 0 0 1 | |0 1 1 | |0 2 1 |
| 24 36 12 1 | | 0 0 1 1 | |0 0 2 1 | |0 0 3 1 |
|120 240 120 20 1| | 0 0 0 2 1| |0 0 0 3 1| |0 0 0 4 1|
|... | |... | |... | |... |
where m = 2. Cf. A008277 (m = 1), A035342 (m = 3), A035469 (m = 4), A049029 (m = 5) A049385 (m = 6), A092082 (m = 7), A132056 (m = 8), A223511 - A223522 (m = 9 through 20), A001497 (m = -1), A004747 (m = -2), A000369 (m = -3), A011801 (m = -4), A013988 (m = -5). (End)
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- Peter Bala, Factorising (r,b)-Stirling arrays
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv preprint arXiv:1105.3043 [math.CO], 2011, J. Int. Seq. 14 (2011) # 11.9.5
- Jean-Paul Blaizot and Maciej A. Nowak, Large N_c confinement and turbulence, arXiv:0801.1859 [hep-th], 2008.
- David Callan, Sets, Lists and Noncrossing Partitions, arXiv:0711.4841 [math.CO], 2007-2008.
- Pietro Codara, Ottavio M. D'Antona, and Pavol Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
- Tom Copeland, Mathemagical Forests, Addendum to Mathemagical Forests, The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions, A Class of Differential Operators and the Stirling Numbers
- Siad Daboul, Jan Mangaldan, Michael Z. Spivey and Peter Taylor, The Lah Numbers and the n-th Derivative of exp(1/x), Math. Mag., 86 (2013), 39-47.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 33.
- G. H. E. Duchamp et al., Feynman graphs and related Hopf algebras, J. Phys. (Conf Ser) 30 (2006) 107-118.
- Rajesh Gopakumar and David J. Gross, Mastering the master field, arXiv:hep-th/9411021, 1994.
- Gábor Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4. - From _Tom Copeland_, Oct 01 2015
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Donald E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
- MacTutor History of Mathematics archive: Biography of Ivo Lah.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019. See p. 18.
- Michael Penn, Lah Numbers and an appearance of exponential generating functions, YouTube video, 2025.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019. See p. 4.
- Tilman Piesk, Illustration of the first four rows
- Kornelia Ufniarz and Grzegorz Siudem, Combinatorial origins of the canonical ensemble, arXiv:2008.00244 [math-ph], 2020. See p. 5.
- Weiping Wang and Tianming Wang, Generalized Riordan arrays, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
- Wikipedia, Lah number
Triangle of Lah numbers (
A008297) unsigned.
Cf.
A111596 (signed triangle with extra n=0 row and m=0 column).
Cf.
A130561 (for a natural refinement).
Cf.
A094638 (for differential operator representation).
Cf.
A089231 (triangle with mirrored rows).
Cf.
A271703 (triangle with extra n=0 row and m=0 column).
-
Flat(List([1..10],n->List([1..n],k->Binomial(n,k)*Factorial(n-1)/Factorial(k-1)))); # Muniru A Asiru, Jul 25 2018
-
a105278 n k = a105278_tabl !! (n-1) !! (k-1)
a105278_row n = a105278_tabl !! (n-1)
a105278_tabl = [1] : f [1] 2 where
f xs i = ys : f ys (i + 1) where
ys = zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
-- Reinhard Zumkeller, Sep 30 2014, Mar 18 2013
-
/* As triangle */ [[Binomial(n,k)*Factorial(n-1)/Factorial(k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 31 2014
-
The triangle: for n from 1 to 13 do seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n) od;
the sequence: seq(seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n),n=1..13);
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> (n+1)!, 9); # Peter Luschny, Jan 27 2016
-
nn = 9; a = x/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y a], {x, 0, nn}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 11 2011 *)
nn = 9; Flatten[Table[(j - k)! Binomial[j, k] Binomial[j - 1, k - 1], {j, nn}, {k, j}]] (* Jan Mangaldan, Mar 15 2013 *)
rows = 10;
t = Range[rows]!;
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
T[n_, n_] := 1; T[n_, k_] /;0Oliver Seipel, Dec 06 2024 *)
-
use ntheory ":all"; say join ", ", map { my $n=$; map { stirling($n,$,3) } 1..$n; } 1..9; # Dana Jacobsen, Mar 16 2017
Showing 1-10 of 17 results.
Comments