A000369 Triangle of numbers related to triangle A049213; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
1, 3, 1, 21, 9, 1, 231, 111, 18, 1, 3465, 1785, 345, 30, 1, 65835, 35595, 7650, 825, 45, 1, 1514205, 848925, 196245, 24150, 1680, 63, 1, 40883535, 23586255, 5755050, 775845, 62790, 3066, 84, 1, 1267389585, 748471185, 190482705, 27478710
Offset: 1
Examples
Triangle begins: 1; 3, 1; 21, 9, 1; 231, 111, 18, 1; 3465, 1785, 345, 30, 1; ... Tree combinatorics for a(3,2)=9: there are three m=2 forests each with one tree a root (with out-degree r=0) and the other tree a root and a leaf coming in three versions (like for a 3-ary vertex). Each such forest can be labeled increasingly in three ways (like (1,(23)), (2,(13)) and (3,(12))) yielding 9 such forests. - _Wolfdieter Lang_, Oct 12 2007
Links
- Vincenzo Librandi, Rows n = 1..50, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0212072, 2002.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wolfdieter Lang, First ten rows.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
- Mathias Pétréolle, Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = (4(n-1) - m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *)
-
Sage
# uses[bell_transform from A264428] # Adds a column 1,0,0,0,... at the left side of the triangle. def A000369_row(n): multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1)) mfact = [multifact_4_3(k) for k in (0..n)] return bell_transform(n, mfact) [A000369_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015
Formula
a(n, m) = n!*A049213(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n-m)*a(n, m) + a(n, m-1), n >= m >= 1; a(n, m) := 0, n
E.g.f. of m-th column: ((1-(1-4*x)^(1/4))^m)/m!.
From Peter Bala, Jun 08 2016: (Start)
With offset 0, the e.g.f. is 1/(1 - 4*x)^(3/4)*exp(t*(1 - (1 - 4*x)^(1/4))) = 1 + (3 + t)*x + (21 + 9*t + t^2)*x^2/2! + ....
Thus with row and column numbering starting at 0, this triangle is the exponential Riordan array [d/dx(F(x)), F(x)], belonging to the Derivative subgroup of the exponential Riordan group, where F(x) = 1 - (1 - 4*x)^(1/4).
Row polynomial recurrence: R(n+1,t) = t*Sum_{k = 0..n} binomial(n,k)*A008545(k)*R(n-k,t) with R(0,t) = 1. (End)
A157403 A partition product of Stirling_2 type [parameter k = 3] with biggest-part statistic (triangle read by rows).
1, 1, 3, 1, 9, 21, 1, 45, 84, 231, 1, 165, 840, 1155, 3465, 1, 855, 8610, 13860, 20790, 65835, 1, 3843, 64680, 250635, 291060, 460845, 1514205, 1, 21819, 689136, 3969735, 6015240, 7373520, 12113640, 40883535, 1, 114075
Offset: 1
Comments
Links
- Peter Luschny, Counting with Partitions.
- Peter Luschny, Generalized Stirling_2 Triangles.
Crossrefs
Formula
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(4*j - 1).
A028575 Row sums of triangle A011801.
1, 5, 49, 721, 14177, 349141, 10334689, 357361985, 14137664833, 629779342213, 31195027543505, 1700812505769169, 101218448336028193, 6528869281965115541, 453720852957751220353, 33796334125623555379969, 2686138908337714715560577, 226908450494953996837748869
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-5*x)^(1/5)) - 1 ))); // G. C. Greubel, Oct 02 2023 -
Mathematica
Rest[With[{nn=20},CoefficientList[Series[Exp[1-(1-5x)^(1/5)]-1, {x,0,nn}], x] Range[0,nn]!]] (* Harvey P. Dale, Aug 02 2016 *)
-
SageMath
def A028575_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(1-(1-5*x)^(1/5)) -1 ).egf_to_ogf().list() a=A028575_list(40); a[1:] # G. C. Greubel, Oct 02 2023
Formula
E.g.f.: exp(1 - (1-5*x)^(1/5)) - 1.
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^4*d/dx. Cf. A001515, A015735 and A016036. - Peter Bala, Nov 25 2011
D-finite with recurrence: a(n) -20*(n-3)*a(n-1) +30*(5*n^2-35*n +62)*a(n-2) -100*(n-4)*(5*n^2-40*n+81)*a(n-3) +(5*n-22)*(5*n-21)*(5*n-24)*(5*n-23)*a(n-4) -a(n-5) = 0. - R. J. Mathar, Jan 28 2020
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-5)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/5,n)/k!. (End)
A015735 Row sums of triangle A004747.
1, 3, 17, 145, 1661, 23931, 415773, 8460257, 197360985, 5192853011, 152137882601, 4911873672113, 173268075672277, 6630323916472075, 273555262963272501, 12105084133976359361, 571897644855277242673, 28731255563712689630627, 1529450942687399074134465
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-3*x)^(1/3)) - 1 ))); // G. C. Greubel, Oct 02 2023 -
Mathematica
a[1]=1; a[n_]:= 1 +(n-1)!*Sum[Binomial[k, n-m-k]*Binomial[k+n-1,n-1]*(-1/3)^(n-m-k)/(m-1)!, {m,n}, {k,n-m}]; Table[a[n], {n,20}] (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *) Rest@With[{m=30}, CoefficientList[Series[Exp[1-Surd[1-3*x,3]] -1, {x, 0,m}], x]*Range[0,m]!] (* G. C. Greubel, Oct 02 2023 *)
-
Maxima
a(n):=if n=1 then 1 else (n-1)!*sum(sum(binomial(k,n-m-k)* (-1/3)^(n-m-k)*binomial(k+n-1,n-1),k,1,n-m)/(m-1)!,m,1,n)+1; /* Vladimir Kruchinin, Aug 08 2010 */
-
SageMath
def A015735_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(1-(1-3*x)^(1/3)) -1 ).egf_to_ogf().list() a=A015735_list(40); a[1:] # G. C. Greubel, Oct 02 2023
Formula
E.g.f.: exp(1-(1-3*x)^(1/3)) - 1, if one takes a(0)=0.
a(n) = 6*(n-2)*a(n-1) - (3*n-8)*(3*n-7)*a(n-2) + a(n-3), a(0)=1, a(1)=1, a(2)=3.
a(n) = 1 + (n-1)!*Sum_{m=1..n} ( Sum_{k=1..n-m} C(k, n-m-k)*C(k+n-1, n-1)*(-1/3)^(n-m-k) ) / (m-1)!, n > 1. - Vladimir Kruchinin, Aug 08 2010
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^2*d/dx. Cf. A001515, A016036 and A028575. - Peter Bala, Nov 25 2011
E.g.f. with offset 0: exp(1-(1-3*x)^(1/3))/(1-3*x)^(2/3). - Sergei N. Gladkovskii, Jul 07 2012.
a(n) ~ sqrt(2*Pi)*3^(n-1)*exp(1-n)*n^(n-5/6)/Gamma(2/3) * (1-sqrt(3)*Gamma(2/3)^2/(2*Pi*n^(1/3))). - Vaclav Kotesovec, Aug 10 2013
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 3^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-3)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/3,n)/k!. (End)
A028844 Row sums of triangle A013988.
1, 6, 71, 1261, 29906, 887751, 31657851, 1318279586, 62783681421, 3365947782611, 200610405843926, 13157941480889921, 941848076798467801, 73060842413607398806, 6105266987293752470991, 546770299628690541571901, 52244284936267317229542466, 5305131708827069245129523591
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-6*x)^(1/6)) -1 ))); // G. C. Greubel, Oct 03 2023 -
Mathematica
With[{nn=20},Rest[CoefficientList[Series[Exp[1-(1-6x)^(1/6)]-1,{x,0,nn}], x]Range[0,nn]!]] (* Harvey P. Dale, Feb 02 2012 *)
-
SageMath
def A028844_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(1-(1-6*x)^(1/6)) -1 ).egf_to_ogf().list() a=A028844_list(40); a[1:] # G. C. Greubel, Oct 03 2023
Formula
E.g.f.: exp(1 - (1-6*x)^(1/6)) - 1.
D-finite with recurrence: a(n) = 15*(2*n-7)*a(n-1) +5*(72*n^2-576*n+1169)*a(n-2) +45*(2*n-9)*(24*n^2-216*n+497)*a(n-3) -20*(324*n^4-6480*n^3+48735*n^2-163350*n+205877)*a(n-4) +12*(6*n-35)*(6*n-31)*(3*n-16)*(2*n-11)*(3*n-17)*a(n-5) +a(n-6). - R. J. Mathar, Jan 28 2020
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-6)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/6,n)/k!. (End)
A132063 Alternating row sums of Jabotinsky type triangle S2p(-3):= A000369.
1, 2, 13, 137, 1996, 37109, 838993, 22336292, 684256123, 23705447669, 916278718246, 39088637286467, 1824146816097373, 92434987026468722, 5054207258536066681, 296598839923053166109, 18593246768511584995468
Offset: 1
Formula
a(n)=sum(A000369(n,m)*(-1)^(m-1),m=1..n)
E.g.f.: 1-exp(-(1-(1-4*x)^(1/4))).
Comments