A004747 Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0.
1, 2, 1, 10, 6, 1, 80, 52, 12, 1, 880, 600, 160, 20, 1, 12320, 8680, 2520, 380, 30, 1, 209440, 151200, 46480, 7840, 770, 42, 1, 4188800, 3082240, 987840, 179760, 20160, 1400, 56, 1, 96342400, 71998080, 23826880, 4583040, 562800, 45360, 2352, 72, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 10, 6, 1; 80, 52, 12, 1; 880, 600, 160, 20, 1; 12320, 8680, 2520, 380, 30, 1; 209440, 151200, 46480, 7840, 770, 42, 1; Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)).
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) #09.3.3.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Magma
function T(n,k) // T = A004747 if k eq 0 then return 0; elif k eq n then return 1; else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
Maple
T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)): for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od; # Karol A. Penson, Feb 06 2004 # The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # Peter Luschny, Jan 29 2016
-
Mathematica
(* First program *) T[1,1]= 1; T[, 0]= 0; T[0, ]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1]; Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* Jean-François Alcover, Jun 16 2011, after recurrence *) (* Second program *) f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* Michael De Vlieger, Dec 23 2015 *) (* Third program *) rows = 12; T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]]; Table[T[n, m], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses [bell_transform from A264428] triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1)) def A004747_row(n): trifact = [triplefactorial(k) for k in (0..n)] return bell_transform(n, trifact) [A004747_row(n) for n in (0..10)] # Peter Luschny, Dec 21 2015
Formula
T(n, m) = n!*A048966(n, m)/(m!*3^(n-m));
T(n+1, m) = (3*n-m)*T(n, m)+ T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n
E.g.f. of m-th column: ( 1 - (1-3*x)^(1/3) )^m/m!.
Sum_{k=1..n} T(n, k) = A015735(n).
For a formula expressed as special values of hypergeometric functions 3F2 see the Maple program below. - Karol A. Penson, Feb 06 2004
T(n,1) = A008544(n-1). - Peter Luschny, Dec 23 2015
Extensions
New name from Peter Luschny, Dec 21 2015
A157402 A partition product of Stirling_2 type [parameter k = 2] with biggest-part statistic (triangle read by rows).
1, 1, 2, 1, 6, 10, 1, 24, 40, 80, 1, 80, 300, 400, 880, 1, 330, 2400, 3600, 5280, 12320, 1, 1302, 15750, 47600, 55440, 86240, 209440, 1, 5936, 129360, 588000, 837760, 1034880, 1675520, 4188800, 1, 26784, 1146040, 5856480
Offset: 1
Comments
Links
- Peter Luschny, Counting with Partitions.
- Peter Luschny, Generalized Stirling_2 Triangles.
Crossrefs
Formula
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(3*j - 1).
A028575 Row sums of triangle A011801.
1, 5, 49, 721, 14177, 349141, 10334689, 357361985, 14137664833, 629779342213, 31195027543505, 1700812505769169, 101218448336028193, 6528869281965115541, 453720852957751220353, 33796334125623555379969, 2686138908337714715560577, 226908450494953996837748869
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-5*x)^(1/5)) - 1 ))); // G. C. Greubel, Oct 02 2023 -
Mathematica
Rest[With[{nn=20},CoefficientList[Series[Exp[1-(1-5x)^(1/5)]-1, {x,0,nn}], x] Range[0,nn]!]] (* Harvey P. Dale, Aug 02 2016 *)
-
SageMath
def A028575_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(1-(1-5*x)^(1/5)) -1 ).egf_to_ogf().list() a=A028575_list(40); a[1:] # G. C. Greubel, Oct 02 2023
Formula
E.g.f.: exp(1 - (1-5*x)^(1/5)) - 1.
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^4*d/dx. Cf. A001515, A015735 and A016036. - Peter Bala, Nov 25 2011
D-finite with recurrence: a(n) -20*(n-3)*a(n-1) +30*(5*n^2-35*n +62)*a(n-2) -100*(n-4)*(5*n^2-40*n+81)*a(n-3) +(5*n-22)*(5*n-21)*(5*n-24)*(5*n-23)*a(n-4) -a(n-5) = 0. - R. J. Mathar, Jan 28 2020
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-5)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/5,n)/k!. (End)
A016036 Row sums of triangle A000369.
1, 4, 31, 361, 5626, 109951, 2585269, 71066626, 2236441141, 79289379361, 3127129674736, 135802922499949, 6439320471558781, 331026965612789356, 18338413238239145731, 1089132347371148170381, 69033182553940825258594, 4651256393180943757676371
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-4*x)^(1/4)) -1 ))); // G. C. Greubel, Oct 02 2023 -
Mathematica
a[n_, m_] /; (n>= m>= 1):= a[n, m]= (4*(n-1)-m)*a[n-1,m] + a[n-1,m-1]; a[n_, m_] /; n
,0]= 0; a[1,1] = 1; a[n]:= Sum[a[n,m], {m, n}]; Table[a[n], {n,20}] (* Jean-François Alcover, Feb 28 2013 *) With[{nn=20},CoefficientList[Series[Exp[1-Surd[1-4x,4]]-1,{x,0,nn}],x] Range[0,nn]!]//Rest (* Harvey P. Dale, Apr 20 2016 *) -
Maxima
a(n):=((n-1)!*sum((sum(binomial(n+k-1,n-1)*sum(binomial(j,n-m-3*k+2*j)*binomial(k,j)*3^(-n+m+3*k-j)*2^(n-m-5*k+3*j)*(-1)^(n-m-k),j,0,k),k,1,n-m))/(m-1)!,m,1,n-1))+1; /* Vladimir Kruchinin, Oct 18 2011 */
-
SageMath
def A016036_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(1-(1-4*x)^(1/4)) -1 ).egf_to_ogf().list() a=A016036_list(40); a[1:] # G. C. Greubel, Oct 02 2023
Formula
E.g.f.: exp(1 - (1-4*x)^(1/4)) - 1.
a(n) = 6*(2*n-5)*a(n-1) - 3*(16*n^2-96*n+145)*a(n-2) + 2*(4*n-15)*(2*n-7)*(4*n-13)*a(n-3) + a(n-4), n >= 4; a(0) = 1, a(1) = 1, a(2) = 4, a(3) = 31.
a(n) = 1 + (n-1)!*Sum_{m=1..n-1} ( Sum_{k=1..n-m} binomial(n+k-1,n-1) * ( Sum_{j=0..k} binomial(j,n-m-3*k+2*j)*binomial(k,j)*3^(-n+m+3*k-j)*2^(n-m-5*k+3*j)*(-1)^(n-m-k) ) )/(m-1)!. - Vladimir Kruchinin, Oct 18 2011
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^3*d/dx. Cf. A001515, A015735 and A028575. - Peter Bala, Nov 25 2011
a(n) ~ 2^(2*n-3/2)*n^(n-3/4)*exp(1-n)*sqrt(Pi)/Gamma(3/4) * (1 - Gamma(3/4)/(n^(1/4)*sqrt(Pi)) + Gamma(3/4)^2/(4*sqrt(n/2)*Pi)). - Vaclav Kotesovec, Aug 10 2013
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 4^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-4)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/4,n)/k!. (End)
A028844 Row sums of triangle A013988.
1, 6, 71, 1261, 29906, 887751, 31657851, 1318279586, 62783681421, 3365947782611, 200610405843926, 13157941480889921, 941848076798467801, 73060842413607398806, 6105266987293752470991, 546770299628690541571901, 52244284936267317229542466, 5305131708827069245129523591
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-6*x)^(1/6)) -1 ))); // G. C. Greubel, Oct 03 2023 -
Mathematica
With[{nn=20},Rest[CoefficientList[Series[Exp[1-(1-6x)^(1/6)]-1,{x,0,nn}], x]Range[0,nn]!]] (* Harvey P. Dale, Feb 02 2012 *)
-
SageMath
def A028844_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(1-(1-6*x)^(1/6)) -1 ).egf_to_ogf().list() a=A028844_list(40); a[1:] # G. C. Greubel, Oct 03 2023
Formula
E.g.f.: exp(1 - (1-6*x)^(1/6)) - 1.
D-finite with recurrence: a(n) = 15*(2*n-7)*a(n-1) +5*(72*n^2-576*n+1169)*a(n-2) +45*(2*n-9)*(24*n^2-216*n+497)*a(n-3) -20*(324*n^4-6480*n^3+48735*n^2-163350*n+205877)*a(n-4) +12*(6*n-35)*(6*n-31)*(3*n-16)*(2*n-11)*(3*n-17)*a(n-5) +a(n-6). - R. J. Mathar, Jan 28 2020
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-6)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/6,n)/k!. (End)
A380309 Expansion of e.g.f. exp( 1 - 1/(1-3*x)^(1/3) ).
1, -1, -3, -17, -143, -1601, -22419, -377217, -7415743, -166854657, -4229195779, -119251176881, -3702809175823, -125546570425537, -4615357640315603, -182855338776726561, -7766868454872857599, -352082642456714366977, -16965451818345573907843
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..382
Programs
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(1-1/(1-3*x)^(1/3))))
Comments