A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).
1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1
Examples
Triangle begins as: 1; 5, 1; 55, 15, 1; 935, 295, 30, 1; 21505, 7425, 925, 50, 1; 623645, 229405, 32400, 2225, 75, 1; 21827575, 8423415, 1298605, 103600, 4550, 105, 1; 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Magma
function T(n,k) // T = A013988 if k eq 0 then return 0; elif k eq n then return 1; else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
Mathematica
(* First program *) rows = 10; b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs; A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
-
Sage
# uses[inverse_bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
A157405 A partition product of Stirling_2 type [parameter k = 5] with biggest-part statistic (triangle read by rows).
1, 1, 5, 1, 15, 55, 1, 105, 220, 935, 1, 425, 3300, 4675, 21505, 1, 3075, 47850, 84150, 129030, 623645, 1, 15855, 415800, 2323475, 2709630, 4365515, 415800, 2323475, 2709630, 4365515, 21827575, 1, 123515, 6394080, 51934575
Offset: 0
Comments
Links
- Peter Luschny, Counting with Partitions.
- Peter Luschny, Generalized Stirling_2 Triangles.
Crossrefs
Formula
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(6*j - 1).
A028575 Row sums of triangle A011801.
1, 5, 49, 721, 14177, 349141, 10334689, 357361985, 14137664833, 629779342213, 31195027543505, 1700812505769169, 101218448336028193, 6528869281965115541, 453720852957751220353, 33796334125623555379969, 2686138908337714715560577, 226908450494953996837748869
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-5*x)^(1/5)) - 1 ))); // G. C. Greubel, Oct 02 2023 -
Mathematica
Rest[With[{nn=20},CoefficientList[Series[Exp[1-(1-5x)^(1/5)]-1, {x,0,nn}], x] Range[0,nn]!]] (* Harvey P. Dale, Aug 02 2016 *)
-
SageMath
def A028575_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(1-(1-5*x)^(1/5)) -1 ).egf_to_ogf().list() a=A028575_list(40); a[1:] # G. C. Greubel, Oct 02 2023
Formula
E.g.f.: exp(1 - (1-5*x)^(1/5)) - 1.
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^4*d/dx. Cf. A001515, A015735 and A016036. - Peter Bala, Nov 25 2011
D-finite with recurrence: a(n) -20*(n-3)*a(n-1) +30*(5*n^2-35*n +62)*a(n-2) -100*(n-4)*(5*n^2-40*n+81)*a(n-3) +(5*n-22)*(5*n-21)*(5*n-24)*(5*n-23)*a(n-4) -a(n-5) = 0. - R. J. Mathar, Jan 28 2020
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-5)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/5,n)/k!. (End)
A016036 Row sums of triangle A000369.
1, 4, 31, 361, 5626, 109951, 2585269, 71066626, 2236441141, 79289379361, 3127129674736, 135802922499949, 6439320471558781, 331026965612789356, 18338413238239145731, 1089132347371148170381, 69033182553940825258594, 4651256393180943757676371
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-4*x)^(1/4)) -1 ))); // G. C. Greubel, Oct 02 2023 -
Mathematica
a[n_, m_] /; (n>= m>= 1):= a[n, m]= (4*(n-1)-m)*a[n-1,m] + a[n-1,m-1]; a[n_, m_] /; n
,0]= 0; a[1,1] = 1; a[n]:= Sum[a[n,m], {m, n}]; Table[a[n], {n,20}] (* Jean-François Alcover, Feb 28 2013 *) With[{nn=20},CoefficientList[Series[Exp[1-Surd[1-4x,4]]-1,{x,0,nn}],x] Range[0,nn]!]//Rest (* Harvey P. Dale, Apr 20 2016 *) -
Maxima
a(n):=((n-1)!*sum((sum(binomial(n+k-1,n-1)*sum(binomial(j,n-m-3*k+2*j)*binomial(k,j)*3^(-n+m+3*k-j)*2^(n-m-5*k+3*j)*(-1)^(n-m-k),j,0,k),k,1,n-m))/(m-1)!,m,1,n-1))+1; /* Vladimir Kruchinin, Oct 18 2011 */
-
SageMath
def A016036_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(1-(1-4*x)^(1/4)) -1 ).egf_to_ogf().list() a=A016036_list(40); a[1:] # G. C. Greubel, Oct 02 2023
Formula
E.g.f.: exp(1 - (1-4*x)^(1/4)) - 1.
a(n) = 6*(2*n-5)*a(n-1) - 3*(16*n^2-96*n+145)*a(n-2) + 2*(4*n-15)*(2*n-7)*(4*n-13)*a(n-3) + a(n-4), n >= 4; a(0) = 1, a(1) = 1, a(2) = 4, a(3) = 31.
a(n) = 1 + (n-1)!*Sum_{m=1..n-1} ( Sum_{k=1..n-m} binomial(n+k-1,n-1) * ( Sum_{j=0..k} binomial(j,n-m-3*k+2*j)*binomial(k,j)*3^(-n+m+3*k-j)*2^(n-m-5*k+3*j)*(-1)^(n-m-k) ) )/(m-1)!. - Vladimir Kruchinin, Oct 18 2011
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^3*d/dx. Cf. A001515, A015735 and A028575. - Peter Bala, Nov 25 2011
a(n) ~ 2^(2*n-3/2)*n^(n-3/4)*exp(1-n)*sqrt(Pi)/Gamma(3/4) * (1 - Gamma(3/4)/(n^(1/4)*sqrt(Pi)) + Gamma(3/4)^2/(4*sqrt(n/2)*Pi)). - Vaclav Kotesovec, Aug 10 2013
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 4^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-4)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/4,n)/k!. (End)
Comments