Original entry on oeis.org
1, 6, 71, 1261, 29906, 887751, 31657851, 1318279586, 62783681421, 3365947782611, 200610405843926, 13157941480889921, 941848076798467801, 73060842413607398806, 6105266987293752470991, 546770299628690541571901, 52244284936267317229542466, 5305131708827069245129523591
Offset: 1
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-6*x)^(1/6)) -1 ))); // G. C. Greubel, Oct 03 2023
-
With[{nn=20},Rest[CoefficientList[Series[Exp[1-(1-6x)^(1/6)]-1,{x,0,nn}], x]Range[0,nn]!]] (* Harvey P. Dale, Feb 02 2012 *)
-
def A028844_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(1-(1-6*x)^(1/6)) -1 ).egf_to_ogf().list()
a=A028844_list(40); a[1:] # G. C. Greubel, Oct 03 2023
A144268
Partition number array, called M32(-5), related to A013988(n,m)= |S2(-5;n,m)| ( generalized Stirling triangle).
Original entry on oeis.org
1, 5, 1, 55, 15, 1, 935, 220, 75, 30, 1, 21505, 4675, 2750, 550, 375, 50, 1, 623645, 129030, 70125, 30250, 14025, 16500, 1875, 1100, 1125, 75, 1, 21827575, 4365515, 2258025, 1799875, 451605, 490875, 211750, 144375, 32725, 57750, 13125, 1925, 2625, 105, 1, 894930575
Offset: 1
a(4,3)=75. The relevant partition of 4 is (2^2). The 75 unordered (0,2,0,0)-forests are composed of the following 2 rooted increasing trees 1--2,3--4; 1--3,2--4 and 1--4,2--3. The trees are 5-ary because r=1 vertices are 5-ary and for the leaves (r=0) the arity does not matter. Each of the three differently labeled forests comes therefore in 5^2=25 versions due to the two 5-ary root vertices.
A144349
Second column (m=2) of triangle S2p(-5) = A013988.
Original entry on oeis.org
1, 15, 295, 7425, 229405, 8423415, 358764175, 17398082625, 946762033525, 57141470006775, 3788581132110775, 273749937606770625, 21411992601604730125, 1802522188780330392375, 162501272634914703865375, 15620379109661843174282625, 1594837561754271113467313125
Offset: 0
A144350
Third column (m=3) of triangle S2p(-5) = A013988.
Original entry on oeis.org
1, 30, 925, 32400, 1298605, 59069010, 3016869625, 171258433500, 10708492743025, 731776512817350, 54281160516507925, 4344836976344865000, 373343787685538795125, 34283431717422205568250, 3350860422355179821712625, 347355560922824645523832500
Offset: 0
A105278
Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!.
Original entry on oeis.org
1, 2, 1, 6, 6, 1, 24, 36, 12, 1, 120, 240, 120, 20, 1, 720, 1800, 1200, 300, 30, 1, 5040, 15120, 12600, 4200, 630, 42, 1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1, 3628800, 16329600
Offset: 1
T(1,1) = C(1,1)*0!/0! = 1,
T(2,1) = C(2,1)*1!/0! = 2,
T(2,2) = C(2,2)*1!/1! = 1,
T(3,1) = C(3,1)*2!/0! = 6,
T(3,2) = C(3,2)*2!/1! = 6,
T(3,3) = C(3,3)*2!/2! = 1,
Sheffer a-sequence recurrence: T(6,2)= 1800 = (6/3)*120 + 6*240.
B(n,k) =
1/(1-x)^2;
2/(1-x)^3, 1/(1-x)^4;
6/(1-x)^4, 6/(1-x)^5, 1/(1-x)^6;
24/(1-x)^5, 36/(1-x)^6, 12/(1-x)^7, 1/(1-x)^8;
The triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9 ...
1: 1
2: 2 1
3: 6 6 1
4: 24 36 12 1
5: 120 240 120 20 1
6: 720 1800 1200 300 30 1
7: 5040 15120 12600 4200 630 42 1
8: 40320 141120 141120 58800 11760 1176 56 1
9: 362880 1451520 1693440 846720 211680 28224 2016 72 1
...
Row n=10: [3628800, 16329600, 21772800, 12700800, 3810240, 635040, 60480, 3240, 90, 1]. - _Wolfdieter Lang_, Feb 01 2013
From _Peter Bala_, Feb 24 2025: (Start)
The array factorizes as an infinite product (read from right to left):
/ 1 \ /1 \^m /1 \^m /1 \^m
| 2 1 | | 0 1 | |0 1 | |1 1 |
| 6 6 1 | = ...| 0 0 1 | |0 1 1 | |0 2 1 |
| 24 36 12 1 | | 0 0 1 1 | |0 0 2 1 | |0 0 3 1 |
|120 240 120 20 1| | 0 0 0 2 1| |0 0 0 3 1| |0 0 0 4 1|
|... | |... | |... | |... |
where m = 2. Cf. A008277 (m = 1), A035342 (m = 3), A035469 (m = 4), A049029 (m = 5) A049385 (m = 6), A092082 (m = 7), A132056 (m = 8), A223511 - A223522 (m = 9 through 20), A001497 (m = -1), A004747 (m = -2), A000369 (m = -3), A011801 (m = -4), A013988 (m = -5). (End)
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- Peter Bala, Factorising (r,b)-Stirling arrays
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv preprint arXiv:1105.3043 [math.CO], 2011, J. Int. Seq. 14 (2011) # 11.9.5
- Jean-Paul Blaizot and Maciej A. Nowak, Large N_c confinement and turbulence, arXiv:0801.1859 [hep-th], 2008.
- David Callan, Sets, Lists and Noncrossing Partitions, arXiv:0711.4841 [math.CO], 2007-2008.
- Pietro Codara, Ottavio M. D'Antona, and Pavol Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
- Tom Copeland, Mathemagical Forests, Addendum to Mathemagical Forests, The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions, A Class of Differential Operators and the Stirling Numbers
- Siad Daboul, Jan Mangaldan, Michael Z. Spivey and Peter Taylor, The Lah Numbers and the n-th Derivative of exp(1/x), Math. Mag., 86 (2013), 39-47.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 33.
- G. H. E. Duchamp et al., Feynman graphs and related Hopf algebras, J. Phys. (Conf Ser) 30 (2006) 107-118.
- Rajesh Gopakumar and David J. Gross, Mastering the master field, arXiv:hep-th/9411021, 1994.
- Gábor Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4. - From _Tom Copeland_, Oct 01 2015
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Donald E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
- MacTutor History of Mathematics archive: Biography of Ivo Lah.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019. See p. 18.
- Michael Penn, Lah Numbers and an appearance of exponential generating functions, YouTube video, 2025.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019. See p. 4.
- Tilman Piesk, Illustration of the first four rows
- Kornelia Ufniarz and Grzegorz Siudem, Combinatorial origins of the canonical ensemble, arXiv:2008.00244 [math-ph], 2020. See p. 5.
- Weiping Wang and Tianming Wang, Generalized Riordan arrays, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
- Wikipedia, Lah number
Triangle of Lah numbers (
A008297) unsigned.
Cf.
A111596 (signed triangle with extra n=0 row and m=0 column).
Cf.
A130561 (for a natural refinement).
Cf.
A094638 (for differential operator representation).
Cf.
A089231 (triangle with mirrored rows).
Cf.
A271703 (triangle with extra n=0 row and m=0 column).
-
Flat(List([1..10],n->List([1..n],k->Binomial(n,k)*Factorial(n-1)/Factorial(k-1)))); # Muniru A Asiru, Jul 25 2018
-
a105278 n k = a105278_tabl !! (n-1) !! (k-1)
a105278_row n = a105278_tabl !! (n-1)
a105278_tabl = [1] : f [1] 2 where
f xs i = ys : f ys (i + 1) where
ys = zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
-- Reinhard Zumkeller, Sep 30 2014, Mar 18 2013
-
/* As triangle */ [[Binomial(n,k)*Factorial(n-1)/Factorial(k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 31 2014
-
The triangle: for n from 1 to 13 do seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n) od;
the sequence: seq(seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n),n=1..13);
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> (n+1)!, 9); # Peter Luschny, Jan 27 2016
-
nn = 9; a = x/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y a], {x, 0, nn}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 11 2011 *)
nn = 9; Flatten[Table[(j - k)! Binomial[j, k] Binomial[j - 1, k - 1], {j, nn}, {k, j}]] (* Jan Mangaldan, Mar 15 2013 *)
rows = 10;
t = Range[rows]!;
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
T[n_, n_] := 1; T[n_, k_] /;0Oliver Seipel, Dec 06 2024 *)
-
use ntheory ":all"; say join ", ", map { my $n=$; map { stirling($n,$,3) } 1..$n; } 1..9; # Dana Jacobsen, Mar 16 2017
A008543
Sextuple factorial numbers: Product_{k=0..n-1} (6*k + 5).
Original entry on oeis.org
1, 5, 55, 935, 21505, 623645, 21827575, 894930575, 42061737025, 2229272062325, 131527051677175, 8549258359016375, 606997343490162625, 46738795448742522125, 3879320022245629336375, 345259481979861010937375, 32799650788086796039050625, 3312764729596766399944113125
Offset: 0
Joe Keane (jgk(AT)jgk.org)
a(n) =
A013988(n+1, 1) (first column of triangle).
-
[Round(6^n*Gamma(n+5/6)/Gamma(5/6)): n in [0..20]]; // G. C. Greubel, Dec 03 2019
-
f := n->product( (6*k-1),k=0..n);
-
FoldList[Times,1,6Range[0,15]+5] (* Harvey P. Dale, Feb 20 2011 *)
Table[6^n*Pochhammer[5/6, n], {n, 0, 20}] (* G. C. Greubel, Dec 03 2019 *)
CoefficientList[Series[(1 - 6x)^(-5/6), {x, 0, 20}], x] Range[0, 20]! (* Nikolaos Pantelidis, Jan 31 2023 *)
-
a(n)=prod(k=1,n,6*k-1) \\ Charles R Greathouse IV, Aug 17 2011
-
[6^n*rising_factorial(5/6, n) for n in (0..20)] # G. C. Greubel, Dec 03 2019
A004747
Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0.
Original entry on oeis.org
1, 2, 1, 10, 6, 1, 80, 52, 12, 1, 880, 600, 160, 20, 1, 12320, 8680, 2520, 380, 30, 1, 209440, 151200, 46480, 7840, 770, 42, 1, 4188800, 3082240, 987840, 179760, 20160, 1400, 56, 1, 96342400, 71998080, 23826880, 4583040, 562800, 45360, 2352, 72, 1
Offset: 1
Triangle begins:
1;
2, 1;
10, 6, 1;
80, 52, 12, 1;
880, 600, 160, 20, 1;
12320, 8680, 2520, 380, 30, 1;
209440, 151200, 46480, 7840, 770, 42, 1;
Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)).
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) #09.3.3.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Index entries for sequences related to Bessel functions or polynomials
-
function T(n,k) // T = A004747
if k eq 0 then return 0;
elif k eq n then return 1;
else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)):
for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od;
# Karol A. Penson, Feb 06 2004
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # Peter Luschny, Jan 29 2016
-
(* First program *)
T[1,1]= 1; T[, 0]= 0; T[0, ]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1];
Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* Jean-François Alcover, Jun 16 2011, after recurrence *)
(* Second program *)
f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* Michael De Vlieger, Dec 23 2015 *)
(* Third program *)
rows = 12;
T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]];
Table[T[n, m], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
# uses [bell_transform from A264428]
triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1))
def A004747_row(n):
trifact = [triplefactorial(k) for k in (0..n)]
return bell_transform(n, trifact)
[A004747_row(n) for n in (0..10)] # Peter Luschny, Dec 21 2015
A011801
Triangle read by rows, the inverse Bell transform of n!*binomial(4,n) (without column 0).
Original entry on oeis.org
1, 4, 1, 36, 12, 1, 504, 192, 24, 1, 9576, 3960, 600, 40, 1, 229824, 100656, 17160, 1440, 60, 1, 6664896, 3048192, 563976, 54600, 2940, 84, 1, 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1, 8837652096, 4302305280, 887785920, 102332160, 7254576, 325584, 9072, 144, 1
Offset: 1
Triangle starts:
1;
4, 1;
36, 12, 1;
504, 192, 24, 1;
9576, 3960, 600, 40, 1;
229824, 100656, 17160, 1440, 60, 1;
6664896, 3048192, 563976, 54600, 2940, 84, 1;
226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1;
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
-
function T(n,k) // T = A011801
if k eq 0 then return 0;
elif k eq n then return 1;
else return (5*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
(* First program *)
T[n_, m_] /; n>=m>=1:= T[n, m]= (5*(n-1)-m)*T[n-1, m] + T[n-1, m-1]; T[n_, m_] /; nJean-François Alcover, Jun 20 2018 *)
(* Second program *)
rows = 10;
b[n_, m_]:= BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]];
T= Table[b[n, m], {n,rows}, {m,rows}]//Inverse//Abs;
A011801= Table[T[[n, m]], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
# uses[inverse_bell_matrix from A264428]
# Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
inverse_bell_matrix(lambda n: factorial(n)*binomial(4, n), 8) # Peter Luschny, Jan 16 2016
A157405
A partition product of Stirling_2 type [parameter k = 5] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 5, 1, 15, 55, 1, 105, 220, 935, 1, 425, 3300, 4675, 21505, 1, 3075, 47850, 84150, 129030, 623645, 1, 15855, 415800, 2323475, 2709630, 4365515, 415800, 2323475, 2709630, 4365515, 21827575, 1, 123515, 6394080, 51934575
Offset: 0
A144342
Lower triangular array called S2hat(-5) related to partition number array A144341.
Original entry on oeis.org
1, 5, 1, 55, 5, 1, 935, 80, 5, 1, 21505, 1210, 80, 5, 1, 623645, 29205, 1335, 80, 5, 1, 21827575, 782595, 30580, 1335, 80, 5, 1, 894930575, 27002800, 821095, 31205, 1335, 80, 5, 1, 42061737025, 1058476100, 27963925, 827970, 31205, 1335, 80, 5, 1, 2229272062325, 48782479625
Offset: 1
[1];[5,1];[55,5,1];[935,80,5,1];[21505,1210,80,5,1];...
Showing 1-10 of 11 results.
Next
Comments