A112942
INVERT transform (with offset) of sextuple factorials (A008543), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^6]/A(x)^6.
Original entry on oeis.org
1, 1, 6, 66, 1086, 24186, 684006, 23506626, 951191646, 44281107066, 2330310876486, 136747268000706, 8851092668419326, 626304664252772346, 48092138192079689766, 3982448437177141451586, 353746119265020213643806
Offset: 0
A(x) = 1 + x + 6*x^2 + 66*x^3 + 1086*x^4 + 24186*x^5 +...
1/A(x) = 1 - x - 5*x^2 - 55*x^3 - 935*x^4 -... -A008543(n)*x^(n+1)-...
-
CoefficientList[Series[1/(1 + 1/6*ExpIntegralE[5/6,-1/(6*x)]/E^(1/(6*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+6*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
A112943
Logarithmic derivative of A112942 such that a(n)=(1/6)*A112942(n+1) for n>0, where A112942 equals the INVERT transform (with offset) of sextuple factorials A008543.
Original entry on oeis.org
1, 11, 181, 4031, 114001, 3917771, 158531941, 7380184511, 388385146081, 22791211333451, 1475182111403221, 104384110708795391, 8015356365346614961, 663741406196190241931, 58957686544170035607301
Offset: 1
log(1+x + 6*x*[x + 11*x^2 + 181*x^3 + 4031*x^4 + 114001*x^5 +...])
= x + 11/2*x^2 + 181/3*x^3 + 4031/4*x^4 + 114001/5*x^5 + ...
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+6*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
A085158
Sextuple factorials, 6-factorials, n!!!!!!, n!6.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 7, 16, 27, 40, 55, 72, 91, 224, 405, 640, 935, 1296, 1729, 4480, 8505, 14080, 21505, 31104, 43225, 116480, 229635, 394240, 623645, 933120, 1339975, 3727360, 7577955, 13404160, 21827575, 33592320, 49579075, 141639680
Offset: 0
a(14) = 224 because 14*a(14-6) = 14*a(8) = 14*16 = 224.
-
a:= function(n)
if n<1 then return 1;
else return n*a(n-6);
fi;
end;
List([0..40], n-> a(n) ); # G. C. Greubel, Aug 21 2019
-
b:=func< n | n le 6 select n else n*Self(n-6) >;
[1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 21 2019
-
a:= n-> `if`(n<1, 1, n*a(n-6)); seq(a(n), n=0..40); # G. C. Greubel, Aug 21 2019
-
Table[Times@@Range[n,1,-6],{n,0,40}] (* Harvey P. Dale, Aug 10 2019 *)
-
a(n)=if(n<1, 1, n*a(n-6));
vector(40, n, n--; a(n) ) \\ G. C. Greubel, Aug 21 2019
-
def a(n):
if (n<1): return 1
else: return n*a(n-6)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 21 2019
A047058
a(n) = 6^n * n!.
Original entry on oeis.org
1, 6, 72, 1296, 31104, 933120, 33592320, 1410877440, 67722117120, 3656994324480, 219419659468800, 14481697524940800, 1042682221795737600, 81329213300067532800, 6831653917205672755200, 614848852548510547968000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
A049209
a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.
Original entry on oeis.org
1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 155008339200, 9610517030400, 663125675097600, 50397551307417600, 4182996758515660800, 376469708266409472000, 36517561701841718784000, 3797826416991538753536000, 421558732286060801642496000
Offset: 0
Row sums of triangle
A051186 (scaled Stirling1 triangle).
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6), this sequence (m=7),
A049210 (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
[ -&*[ (7*k-1): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
-
CoefficientList[Series[(1-7*x)^(-6/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
With[{m=7}, Table[m^n*Pochhammer[(m-1)/m, n], {n, 0, 30}]] (* G. C. Greubel, Feb 16 2022 *)
-
m=7; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A049211
a(n) = Product_{k=1..n} (9*k - 1); 9-factorial numbers.
Original entry on oeis.org
1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 101636305971200, 9045631231436800, 886471860680806400, 94852489092846284800, 11002888734770169036800, 1375361091846271129600000, 184298386307400331366400000, 26354669241958247385395200000
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7),
A049210 (m=8), this sequence (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=9; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
-
CoefficientList[Series[(1-9*x)^(-8/9),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = prod(k=1, n, 9*k-1); \\ Michel Marcus, Jan 08 2015
-
m=9; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022
a(9) (originally given incorrectly as 1011636305971200) corrected by
Peter Bala, Feb 20 2015
a(16) corrected and incorrect MAGMA program removed by
Georg Fischer, May 10 2021
A049210
a(n) = -Product_{k=0..n} (8*k-1); octo-factorial numbers.
Original entry on oeis.org
1, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425, 33760034483175, 2667042724170825, 232032717002861775, 22043108115271868625, 2270440135873002468375, 252018855081903273989625, 29990243754746489604765375, 3808760956852804179805202625
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7), this sequence (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=8; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..30]]; // G. C. Greubel, Feb 16 2022
-
FoldList[Times,1,8*Range[20]-1] (* Harvey P. Dale, Aug 03 2014 *)
CoefficientList[Series[(1-8*x)^(-7/8),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = -prod(k=0, n, 8*k-1); \\ Michel Marcus, Jan 08 2015
-
m=8; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A013988
Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).
Original entry on oeis.org
1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1
Triangle begins as:
1;
5, 1;
55, 15, 1;
935, 295, 30, 1;
21505, 7425, 925, 50, 1;
623645, 229405, 32400, 2225, 75, 1;
21827575, 8423415, 1298605, 103600, 4550, 105, 1;
894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
-
function T(n,k) // T = A013988
if k eq 0 then return 0;
elif k eq n then return 1;
else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
(* First program *)
rows = 10;
b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];
A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs;
A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]];
Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
-
# uses[inverse_bell_matrix from A264428]
# Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
A049308
Sextuple factorial numbers: Product_{k=0..n-1} (6*k+4).
Original entry on oeis.org
1, 4, 40, 640, 14080, 394240, 13404160, 536166400, 24663654400, 1282510028800, 74385581670400, 4760677226905600, 333247405883392000, 25326802847137792000, 2076797833465298944000, 182758209344946307072000, 17179271678424952864768000, 1717927167842495286476800000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
[n le 2 select 4^(n-1) else 2*(3*n-1)*Self(n-1): n in [1..30]]; // G. C. Greubel, Mar 29 2022
-
Table[6^n*Pochhammer[2/3, n], {n,0,30}] (* G. C. Greubel, Mar 29 2022 *)
-
a(n) = prod(k=0, n-1, 6*k+4); \\ Michel Marcus, Mar 30 2022
-
[6^n*rising_factorial(2/3,n) for n in (0..30)] # G. C. Greubel, Mar 29 2022
A157405
A partition product of Stirling_2 type [parameter k = 5] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 5, 1, 15, 55, 1, 105, 220, 935, 1, 425, 3300, 4675, 21505, 1, 3075, 47850, 84150, 129030, 623645, 1, 15855, 415800, 2323475, 2709630, 4365515, 415800, 2323475, 2709630, 4365515, 21827575, 1, 123515, 6394080, 51934575
Offset: 0
Showing 1-10 of 24 results.
Next
Comments