INVERT transform of double factorials (
A001147), shifted right one place, where g.f. A(x) satisfies: A(x) = 1 + x*[d/dx x*A(x)^2]/A(x)^2.
G.f. A(x) satisfies: A(x) = 1+x + 2*x^2*[d/dx A(x)]/A(x) (log derivative).
G.f.: A(x) = 1+x +2*x^2/(1-3*x -2*2*1*x^2/(1-7*x -2*3*3*x^2/(1-11*x -2*4*5*x^2/(1-15*x - ... -2*n*(2*n-3)*x^2/(1-(4*n-1)*x - ...)))) (continued fraction).
G.f.: A(x) = 1/(1-x/(1 -1*x/(1-2*x/(1 -3*x/(1-4*x(1 - ...))))))) (continued fraction).
The g.f. of a(n+1) is 1/(1-2x/(1-x/(1-4x/(1-3x/(1-6x/(1-5x/(1-.... (continued fraction).
The Hankel transform of a(n+1) is
A137592. (End)
a(n) is the upper left term in M^n, M = the production matrix:
1, 1;
1, 1, 2;
1, 1, 2, 3;
1, 1, 2, 3, 4;
1, 1, 2, 3, 4, 5;
... (End)
Another production matrix Q is:
1, 1, 0, 0, 0, ...
1, 0, 3, 0, 0, ...
1, 0, 0, 5, 0, ...
1, 0, 0, 0, 7, ...
...
The sequence is generated by extracting the upper left term of powers of Q. By extracting the top row of Q^n, we obtain a triangle with the sequence in the left column and row sums = (1, 2, 6, 26, 158, ...): (1), (1, 1), (2, 1, 3), (6, 2, 3, 15), (26, 6, 6, 15, 105), ... (End)
a(n) = (2*n - 1) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. -
Michael Somos, Jul 23 2011
From
Sergei N. Gladkovskii, Aug 11 2012, Aug 12 2012, Dec 26 2012, Mar 20 2013, Jun 02 2013, Aug 14 2013, Oct 22 2013: (Start) Continued fractions:
G.f. 1/(G(0)-x) where G(k) = 1 - x*(k+1)/G(k+1).
G.f. 1 + x/(G(0)-x) where G(k) = 1 - x*(k+1)/G(k+1).
G.f.: A(x) = 1 + x/(G(0) - x) where G(k) = 1 + (2*k+1)*x - x*(2*k+2)/G(k+1).
G.f.: Q(0) where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+2)/Q(k+1)).
G.f.: 2/G(0) where G(k) = 1 + 1/(1 - x/(x + 1/(2*k-1)/G(k+1))).
G.f.: 3*x - G(0) where G(k) = 3*x - 2*x*k - 1 - x*(2*k-1)/G(k+1).
G.f.: 1 + x*Q(0) where Q(k) = 1 - x*(2*k+2)/(x*(2*k+2) - 1/(1 - x*(2*k+1)/(x*(2*k+1) - 1/Q(k+1)))). (End)