A112935
Logarithmic derivative of A112934 such that a(n)=(1/2)*A112934(n+1) for n>0, where A112934 equals the INVERT transform of double factorials A001147.
Original entry on oeis.org
1, 3, 13, 79, 641, 6579, 81677, 1187039, 19728193, 368562723, 7639512013, 173893382575, 4310656806977, 115569893763411, 3331588687405133, 102751933334045375, 3375782951798785921, 117693183724386637635
Offset: 1
log(1+x + 2*x*[x + 3*x^2 + 13*x^3 + 79*x^4 + 641*x^5 +...])
= x + 3/2*x^2 + 13/3*x^3 + 79/4*x^4 + 641/5*x^5 +...
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+2*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
A355721
Square table, read by antidiagonals: the g.f. for row n is given recursively by (2*n-1)*x*R(n,x) = 1 + (2*n-3)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112934(k+1)*x^k.
Original entry on oeis.org
1, 1, 2, 1, 2, 6, 1, 2, 10, 26, 1, 2, 14, 74, 158, 1, 2, 18, 138, 706, 1282, 1, 2, 22, 218, 1686, 8162, 13158, 1, 2, 26, 314, 3194, 24162, 110410, 163354, 1, 2, 30, 426, 5326, 53890, 394254, 1708394, 2374078, 1, 2, 34, 554, 8178, 102722, 1019250, 7191018, 29752066, 39456386
Offset: 0
Square array begins
1, 2, 6, 26, 158, 1282, 13158, 163354, 2374078, 39456386, ...
1, 2, 10, 74, 706, 8162, 110410, 1708394, 29752066, 576037442, ...
1, 2, 14, 138, 1686, 24162, 394254, 7191018, 144786006, 3188449602, ...
1, 2, 18, 218, 3194, 53890, 1019250, 21256090, 483426010, 11895873410, ...
1, 2, 22, 314, 5326, 102722, 2197558, 51355514, 1297759918, 35208930050, ...
1, 2, 26, 426, 8178, 176802, 4206618, 108577674, 3011332338, 89141101506, ...
1, 2, 30, 554, 11846, 283042, 7396830, 208569034, 6288011206, 201404591042, ...
...
-
T := (n,k) -> coeff(series(hypergeom([n+1/2, 1], [], 2*x)/ hypergeom([n-1/2, 1], [], 2*x), x, 21), x, k):
# display as a sequence
seq(seq(T(n-k,k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n,k), k = 0..10)), n = 0..10);
A028310
Expansion of (1 - x + x^2) / (1 - x)^2 in powers of x.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 0
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
- Olivia Nabawanda and Fanja Rakotondrajao, The sets of flattened partitions with forbidden patterns, arXiv:2011.07304 [math.CO], 2020.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Oeis Wiki, Autosequence
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
- Michael Somos, Rational Function Multiplicative Coefficients
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
- Index entries for Molien series
- Index entries for sequences related to Engel expansions
-
a028310 n = 0 ^ n + n
a028310_list = 1 : [1..] -- Reinhard Zumkeller, Nov 06 2012
-
[n eq 0 select 1 else n: n in [0..75]]; // G. C. Greubel, Jan 05 2024
-
a:= n-> `if`(n=0, 1, n):
seq(a(n), n=0..60);
-
Denominator@ CoefficientList[Series[Log[1+x], {x,0,75}], x] (* or *)
CoefficientList[ Series[(1 -x +x^2)/(1-x)^2, {x,0,75}], x] (* Robert G. Wilson v, Aug 14 2015 *)
Join[{1}, Range[75]] (* G. C. Greubel, Jan 05 2024 *)
LinearRecurrence[{2,-1},{1,1,2},80] (* Harvey P. Dale, Jan 29 2025 *)
-
{a(n) = (n==0) + max(n, 0)} /* Michael Somos, Feb 02 2004 */
-
A028310(n)=n+!n \\ M. F. Hasler, Jan 16 2012
-
def A028310(n): return n|bool(n)^1 # Chai Wah Wu, Jul 13 2023
-
[n + int(n==0) for n in range(76)] # G. C. Greubel, Jan 05 2024
A098694
Double-superfactorials: a(n) = Product_{k=1..n} (2k)!.
Original entry on oeis.org
1, 2, 48, 34560, 1393459200, 5056584744960000, 2422112183371431936000000, 211155601241022491077587763200000000, 4417964278440225627098723475313498521600000000000
Offset: 0
-
[&*[ Factorial(2*k): k in [0..n] ]: n in [0..10]]; // Vincenzo Librandi, Dec 11 2016
-
Table[Product[(2k)!,{k,1,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
-
a(n) = prod(k=1, n, (2*k)!); \\ Michel Marcus, Dec 11 2016
-
from math import prod
def A098694(n): return prod(((k+1)*((k<<1)+1)<<1)**(n-k) for k in range(1,n+1))<Chai Wah Wu, Nov 26 2023
A112936
INVERT transform (with offset) of triple factorials (A008544), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^3]/A(x)^3.
Original entry on oeis.org
1, 1, 3, 15, 111, 1131, 14943, 243915, 4742391, 106912131, 2739347103, 78569371275, 2492748594471, 86650852740531, 3274367635513263, 133625238021647835, 5856377114106629751, 274320168321004350531
Offset: 0
A(x) = 1 + x + 3*x^2 + 15*x^3 + 111*x^4 + 1131*x^5 + 14943*x^6 +...
1/A(x) = 1 - x - 2*x^2 - 10*x^3 - 80*x^4 - 880*x^5 -...-A008544(n)*x^(n+1)-...
-
a = ConstantArray[0,20]; a[[1]]=1; Do[a[[n]] = (3*n-2)*a[[n-1]] - Sum[a[[k]]*a[[n-k]],{k,1,n-1}],{n,2,20}]; Flatten[{1,a}] (* Vaclav Kotesovec after Michael Somos, Feb 22 2014 *)
CoefficientList[Series[1/(1+(1/3*ExpIntegralE[2/3,-1/(3*x)])/E^(1/(3*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+3*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
-
{a(n) = my(A); if( n<1, n==0, A = vector(n, k, 1); for(k=2, n, A[k] = (3*k - 2)*A[k-1] - sum(j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 23 2011 */
-
{a(n) = if( n<1, n==0, polcoeff( 1 / sum(k=0, n, x^k * prod(i=1, k, 3*i - 4), x * O(x^n)), n))}; /* Michael Somos, Oct 17 2016 */
-
{a(n) = my(A); if( n<0, 0, A = O(x); for(k=0, n, A = (x + sqrt(x^2 + 4*x^5*A')) / 2); polcoeff(A, 3*n + 1))}; /* Michael Somos, Oct 17 2016 */
-
{a(n) = my(A); if( n<1, n==0, A = x; for(k=1, n, A = truncate(A) + O(x^(3*k + 4)); A += A + x^4*A' - A^2/x); polcoeff(A, 3*n + 1))}; /* Michael Somos, Oct 17 2016 */
A111146
Triangle T(n,k), read by rows, given by [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 5, 8, 0, 0, 6, 15, 17, 16, 0, 0, 24, 62, 68, 49, 32, 0, 0, 120, 322, 359, 243, 129, 64, 0, 0, 720, 2004, 2308, 1553, 756, 321, 128, 0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256, 0, 0, 40320, 119664
Offset: 0
Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 4;
.0, 0, 2, 5, 8;
.0, 0, 6, 15, 17, 16;
.0, 0, 24, 62, 68, 49, 32;
.0, 0, 120, 322, 359, 243, 129, 64;
.0, 0, 720, 2004, 2308, 1553, 756, 321, 128;
.0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256;
.0, 0, 40320, 119664, 148232, 105048, 49840, 18066, 5756, 1793, 512;
....................................................................
At y=2: Sum_{k=0..n} 2^k*T(n,k) = A113327(n) where (1 + 2*x + 8*x^2 + 36*x^3 +...+ A113327(n)*x^n +..) = 1/(1 - 2/1!*x*(1! + 2!*x + 3!*x^2 + 4!*x^3 +..) ).
At y=3: Sum_{k=0..n} 3^k*T(n,k) = A113328(n) where (1 + 3*x + 18*x^2 + 117*x^3 +...+ A113328(n)*x^n +..) = 1/(1 - 3/2!*x*(2! + 3!*x + 4!*x^2 + 5!*x^3 +..) ).
At y=4: Sum_{k=0..n} 4^k*T(n,k) = A113329(n) where (1 + 4*x + 32*x^2 + 272*x^3 +...+ A113329(n)*x^n +..) = 1/(1 - 4/3!*x*(3! + 4!*x + 5!*x^2 + 6!*x^3 +..) ).
-
T[n_, k_] := Module[{x = X + X*O[X]^n, y = Y + Y*O[Y]^k}, A = 1/(1 - x*y*Sum[x^j*Product[y + i, {i, 0, j - 1}], {j, 0, n}]); Coefficient[ Coefficient[A, X, n], Y, k]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, from PARI *)
-
{T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); A=1/(1-x*y*sum(j=0,n,x^j*prod(i=0,j-1,y+i))); return(polcoeff(polcoeff(A,n,X),k,Y))} (Hanna)
A168467
a(n) = Product_{k=0..n} ((2*k+2)*(2*k+3))^(n-k).
Original entry on oeis.org
1, 6, 720, 3628800, 1316818944000, 52563198423859200000, 327312129899898454671360000000, 428017682605583614976547335700480000000000, 152240508705590071980086429193304853792686080000000000000
Offset: 0
From _Federico Provvedi_, Apr 01 2021: (Start)
From both formulas in the comment above and in particular with z=2 from the linear recurrences, the determinant of the 5 X 5 matrix: ( (1,6,35,204,1189), (1,12,128,1344,14080),(1,22,403,7084,123205), (1,36,1040,28224,749824), (1,54,2291,89964,3426181) ) = 1316818944000 = a(5).
For a generic z, the determinant doesn't change as shown in this example, where the determinant of the 3 X 3 square matrix:
( ( 1, 2*(z+1), (2*z + 1)*(2*z+3) ),
( 1, 2*(z+4), 4*(z+6)*(z+2) ),
( 1, 2*(z+9), (2*z + 9)(2*z + 27)) ) = 720 = a(3). (End)
-
Table[2^(n^2 + 2*n + 23/24) Glaisher^(3/2) Pi^(-n/2 - 3/4) BarnesG[n + 2] BarnesG[n + 5/2]/E^(1/8), {n, 0, 10}] (* Vladimir Reshetnikov, Sep 06 2016 *)
Table[Product[((2k+2)(2k+3))^(n-k),{k,0,n}],{n,0,10}] (* Harvey P. Dale, Dec 26 2019 *)
Table[Det@Table[LinearRecurrence[{2*k^2,-k^4},{1, 2*k^2},n], {k, 1, n}], {n,1,20}] (* Federico Provvedi, Feb 01 2021 *)
Det@Expand@Array[(#1^(2 #2))/(4 Sqrt[1 + #1^2])((Sqrt[1+1/#1^2]+1/#1)^(2 #2)-(Sqrt[1+1/#1^2]-1/#1)^(2 #2))&,{#,#}]&/@Range[20] (* Federico Provvedi, Apr 01 2021 *)
-
from math import prod
def A168467(n): return prod(((m:=k+1<<1)*(m+1))**(n-k) for k in range(1,n+1))*3**n<Chai Wah Wu, Nov 26 2023
A112938
INVERT transform (with offset) of quadruple factorials (A008545), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^4]/A(x)^4.
Original entry on oeis.org
1, 1, 4, 28, 292, 4156, 75844, 1694812, 44835172, 1369657468, 47422855300, 1834403141788, 78377228106148, 3664969183404220, 186134931067171012, 10201887125268108508, 600142156513333537252, 37713563573426417361148
Offset: 0
A(x) = 1 + x + 4*x^2 + 28*x^3 + 292*x^4 + 4156*x^5 + ...
1/A(x) = 1 - x - 3*x^2 - 21*x^3 - 231*x^4 -... -A008545(n)*x^(n+1)-...
-
CoefficientList[Series[1/(1 + 1/4*ExpIntegralE[3/4,-1/(4*x)]/E^(1/(4*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+4*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
A112940
INVERT transform (with offset) of quintuple factorials (A008546), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^5]/A(x)^5.
Original entry on oeis.org
1, 1, 5, 45, 605, 11045, 257005, 7288245, 243870205, 9401560645, 410141056205, 19966451812245, 1072718714991005, 63033317759267045, 4020725747388170605, 276661592017425909045, 20424931173615717011005
Offset: 0
A(x) = 1 + x + 5*x^2 + 45*x^3 + 605*x^4 + 11045*x^5 +...
1/A(x) = 1 - x - 4*x^2 - 36*x^3 - 504*x^4 -... -A008546(n)*x^(n+1) -...
-
CoefficientList[Series[1/(1 + 1/5*ExpIntegralE[4/5, -1/(5*x)]/E^(1/(5*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+5*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
A112942
INVERT transform (with offset) of sextuple factorials (A008543), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^6]/A(x)^6.
Original entry on oeis.org
1, 1, 6, 66, 1086, 24186, 684006, 23506626, 951191646, 44281107066, 2330310876486, 136747268000706, 8851092668419326, 626304664252772346, 48092138192079689766, 3982448437177141451586, 353746119265020213643806
Offset: 0
A(x) = 1 + x + 6*x^2 + 66*x^3 + 1086*x^4 + 24186*x^5 +...
1/A(x) = 1 - x - 5*x^2 - 55*x^3 - 935*x^4 -... -A008543(n)*x^(n+1)-...
-
CoefficientList[Series[1/(1 + 1/6*ExpIntegralE[5/6,-1/(6*x)]/E^(1/(6*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+6*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
Showing 1-10 of 25 results.
Comments