A379561 a(n) = A003418(n+1)*H(n), where H(n) = 1 + 1/2 + ... + 1/n is the n-th harmonic number.
2, 9, 22, 125, 137, 1029, 2178, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 813635157, 825887397, 837527025, 848612385, 19761458895, 19994251455, 101086721625, 102157567401, 309561680403, 312536252003, 9146733078187
Offset: 1
Keywords
Examples
a(n)/A025558(n) = [ 2/1, 9/4, 22/9, 125/48, 137/50, 1029/360, 2178/735, ... ] To evaluate the integral: For n = 1: Integral_{x=0..1} Li_1(x^(1/2))/x^(1/2) dx = Integral_{x=0..1} -log(1-x^(1/2))/x^(1/2) dx = -2 * -(Sum_{x=1..oo} 1/(x*(x+1))) = -2 * -1 = 2. For n = 2: Integral_{x=0..1} Li_1(x^(1/3))/x^(1/3) dx = Integral_{x=0..1} -log(1-x^(1/3))/x^(1/3) dx = -3 * -(Sum_{x=1..oo} 1/(x*(x+2))) = -3 * -((1/2)*(1+1/2)) = -3 * -3/4 = 9/4. For n = 3: Integral_{x=0..1} Li_1(x^(1/4))/x^(1/4) dx = Integral_{x=0..1} -log(1-x^(1/4))/x^(1/4) dx = -4 * -(Sum_{x=1..oo} 1/(x*(x+3))) = -4 * -((1/3)*(1+1/2+1/3)) = -4 * -11/18 = 22/9.
Links
- Guilherme França and André LeClair, Statistical and other properties of Riemann zeros based on an explicit equation for the n-th zero on the critical line, arXiv:1307.8395 [math.NT], 2014.
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (6) (2002) 534-543. arXiv preprint, arXiv:math/0008177 [math.NT], 2000-2001.
Crossrefs
Programs
-
PARI
a(n) = lcm(vector(n+1, i, i))*sum(i=1, n, 1/i); \\ Michel Marcus, Dec 28 2024
Formula
a(n) = A025558(n)*(Integral_{x=0..1} Li_1(x^(1/(n+1)))/x^(1/(n+1)) dx).
Integral_{x=0..1} Li_1(x^(1/(n+1)))/x^(1/(n+1)) dx = ((n+1)/n)*H(n) = a(n)/A025558(n).
((n+1)/n)*H(n) ~ log(n) + gamma + (log(n)+gamma+1/2)/n + O(1/n^2).
log(a(n)) ~ n + log(log(n)) + O(c*sqrt(n)*log(n)^(-1/2)), (See comments for constant c).
G.f. for ((n+1)/n)*H(n): G(x) = Li_2(x)+(1/2)*log(1-x)^2-log(1-x)/(1-x), the lim_{x->oo} G(x) = -zeta(2).
Hyperbolic l.g.f. for ((n+1)/n)*H(n): LH(x) = Li_2(x)+(1/2)*log(1-x)^2+Li_3(x)-Li_3(1-x)+Li_2(1-x)*log(1-x)+(1/2)*log(x)*log(1-x)^2+zeta(3), the Integral_{x=0..1} LH(x) dx = 2*zeta(3) = A152648.
Dirichlet g.f. for ((n+1)/n)*H(n): zeta(s+1)*(zeta(s)+zeta(s+2)).
Comments