A338133
Primitive nondeficient numbers sorted by largest prime factor then by increasing size. Irregular triangle T(n, k), n >= 2, k >= 1, read by rows, row n listing those with largest prime factor = prime(n).
Original entry on oeis.org
6, 20, 28, 70, 945, 1575, 2205, 88, 550, 3465, 5775, 7425, 8085, 12705, 104, 572, 650, 1430, 2002, 4095, 6435, 6825, 9555, 15015, 78975, 81081, 131625, 189189, 297297, 342225, 351351, 570375, 63126063, 99198099, 117234117, 272, 748, 1870, 2210, 5355, 8415, 8925, 11492
Offset: 2
Row 1 is empty as there exists no primitive nondeficient number of the form prime(1)^k = 2^k.
Row 2 is (6) as 6 is the only primitive nondeficient number of the form prime(1)^k * prime(2)^m = 2^k * 3^m that is a multiple of prime(2) = 3.
Irregular triangle T(n, k) begins:
n prime(n) row n
2 3 6;
3 5 20;
4 7 28, 70, 945, 1575, 2205;
5 11 88, 550, 3465, 5775, 7425, 8085, 12705;
...
See also the factorization of initial terms below:
6 = 2 * 3,
20 = 2^2 * 5,
28 = 2^2 * 7,
70 = 2 * 5 * 7,
945 = 3^3 * 5 * 7,
1575 = 3^2 * 5^2 * 7,
2205 = 3^2 * 5 * 7^2,
88 = 2^3 * 11,
550 = 2 * 5^2 * 11,
3465 = 3^2 * 5 * 7 * 11,
5775 = 3 * 5^2 * 7 * 11,
7425 = 3^3 * 5^2 * 11,
8085 = 3 * 5 * 7^2 * 11,
12705 = 3 * 5 * 7 * 11^2,
104 = 2^3 * 13,
572 = 2^2 * 11 * 13,
650 = 2 * 5^2 * 13,
1430 = 2 * 5 * 11 * 13,
2002 = 2 * 7 * 11 * 13,
4095 = 3^2 * 5 * 7 * 13,
...
-
rownupto(n, u) = { my(res = List(), pr = primes(n), e = vector(n, i, logint(u, pr[i]))); vu = vector(n, i, [0, e[i]]); vu[n][1] = 1; forvec(x = vu, c = prod(i = 1, n, pr[i]^x[i]); if(c <= u && isprimitive(c), listput(res, c) ) ); Set(res) }
isprimitive(n) = { my(f = factor(n), c); if(sigma(f) < 2*n, return(0)); for(i = 1, #f~, c = n / f[i,1]; if(sigma(c) >= c * 2, return(0) ) ); 1 }
for(i = 2, 7, print(rownupto(i, 10^9)))
A339343
Abundant pseudoperfect numbers k such that no subset of the nontrivial divisors {d|k : 1 < d < k} sums to k.
Original entry on oeis.org
20, 88, 104, 272, 304, 350, 368, 464, 572, 650, 1184, 1312, 1376, 1504, 1696, 1888, 1952, 3770, 4288, 4544, 4672, 5056, 5312, 5696, 5704, 5810, 6208, 6464, 6592, 6790, 6808, 6848, 6976, 7144, 7232, 7630, 7910, 8024, 8056, 9590, 9730, 10744, 11096, 11288, 13192
Offset: 1
20 is a term since it is a pseudoperfect number, 20 = 1 + 4 + 5 + 10, and the set of nontrivial divisors of 20, {d|20 : 1 < d < 20} = {2, 4, 5, 10}, has no subset that sums to 20.
Cf.
A000203,
A000396,
A000668,
A005100,
A005101,
A005835,
A006037,
A033880,
A070824,
A088831,
A122036,
A136446,
A308710.
-
psQ[n_] := DivisorSigma[1, n] > 2*n && Module[{d = Most@Divisors[n], x}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, 2, Length[d]}], {x, 0, n}], n] == 0 ]; Select[Range[2000], psQ]
A337814
a(n) is the smallest primitive nondeficient number that divides n or is a multiple of n.
Original entry on oeis.org
6, 6, 6, 20, 20, 6, 28, 88, 945, 20, 88, 6, 104, 28, 945, 272, 272, 6, 304, 20, 945, 88, 368, 6, 550, 104, 945, 28, 464, 6, 496, 1184, 3465, 272, 70, 6, 1184, 304, 4095, 20, 1312, 6, 1376, 88, 945, 368, 1504, 6, 2205, 550
Offset: 1
6 is the smallest primitive nondeficient number, and is a multiple of 1, 2 and 3; so a(1) = a(2) = a(3) = 6.
For n = 4: we see 6 is not a multiple of 4, but the second smallest primitive nondeficient number, 20, is a multiple of 4; so a(4) = 20.
For n = 9: as 9 is deficient, we seek a suitable multiple. All even multiples of 9 are nondeficient, as they are multiples of nondeficient 6, but that also means they are not primitive. So we seek a qualifying odd multiple. The first odd nondeficient number is 945, which must therefore be primitive, and is also a multiple of 9. So a(9) = 945.
For n = 40: as a nondeficient number, we know 40 must have a primitive nondeficient divisor; the least such is 20, so a(40) = 20.
A367481
Primitive practical numbers of the form 2 * 3^i * prime(k).
Original entry on oeis.org
30, 42, 66, 78, 306, 342, 414, 522, 558, 666, 2214, 2322, 2538, 2862, 3186, 3294, 3618, 3834, 3942, 4266, 4482, 4806, 5238, 5454, 5562, 5778, 5886, 6102, 20574, 21222, 22194, 22518, 24138, 24462, 25434, 26406, 27054, 28026, 28998, 29322, 30942, 31266, 31914
Offset: 1
Showing 1-4 of 4 results.
Comments