A382865 Bitwise XOR of all integers between n and 2n (endpoints included).
0, 3, 5, 4, 8, 15, 13, 8, 16, 27, 21, 28, 24, 23, 29, 16, 32, 51, 37, 52, 40, 63, 45, 56, 48, 43, 53, 44, 56, 39, 61, 32, 64, 99, 69, 100, 72, 111, 77, 104, 80, 123, 85, 124, 88, 119, 93, 112, 96, 83, 101, 84, 104, 95, 109, 88, 112, 75, 117, 76, 120, 71, 125, 64, 128, 195
Offset: 0
Examples
a(3) = 3 XOR 4 XOR 5 XOR 6 = 4, in binary representation is: ((011 XOR 100) XOR 101) XOR 110 = (111 XOR 101) XOR 110 = 010 XOR 110 = 100 (4 in decimal).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..16383
- Karl-Heinz Hofmann, Zoom trip with n mod 4 colored.
- Wikipedia, Bitwise operation: XOR
Programs
-
Maple
a:= proc(n) option remember; uses Bits; `if`(n=0, 0, Xor(Xor(Xor(a(n-1), n-1), 2*n-1), 2*n)) end: seq(a(n), n=0..65); # Alois P. Heinz, May 26 2025
-
Mathematica
a[n_] = BitXor[BitOr[n-1, 2] - (-1)^n*(n-1), 4*n]/2; Table[a[n],{n,0, 65}]
-
PARI
a(n) = my(b=n); for (i=n+1, 2*n, b = bitxor(b, i)); b; \\ Michel Marcus, May 25 2025
-
Python
def A382865(n): return [0, n, 1, n-1][n%4] ^ (2*n) # Karl-Heinz Hofmann, May 26 2025
Formula
From Karl-Heinz Hofmann, May 27 2025: (Start)
For all n == 0 (mod 4) --> a(n) = A005843(n) = 2*n
For all n == 1 (mod 4) --> a(n) = A048724(n)
For all n == 2 (mod 4) --> a(n) = A005408(n) = 2*n + 1
For all n == 3 (mod 4) --> a(n) = A048724(n) - 1 (End)
Comments