cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A137592 Duplicate of A098694.

Original entry on oeis.org

1, 2, 48, 34560, 1393459200, 5056584744960000, 2422112183371431936000000, 211155601241022491077587763200000000, 4417964278440225627098723475313498521600000000000
Offset: 0

Views

Author

Paul Barry, Jan 28 2008

Keywords

Comments

Hankel transform of A112934(n+1). [From Paul Barry, Dec 04 2009]

Formula

a(n)=Product{k=0..n, (2(k+1)(2k+1))^(n-k)}; a(n)=A000178(n)*A057863(n)*A006125(n+1)=A121835(n)*A006125(n+1);
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 1/(1 + 1/(2*k+2)!/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013

A000178 Superfactorials: product of first n factorials.

Original entry on oeis.org

1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000, 265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the Vandermonde determinant of the numbers 1,2,...,(n+1), i.e., the determinant of the (n+1) X (n+1) matrix A with A[i,j] = i^j, 1 <= i <= n+1, 0 <= j <= n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
a(n) = (1/n!) * D(n) where D(n) is the determinant of order n in which the (i,j)-th element is i^j. - Amarnath Murthy, Jan 02 2002
Determinant of S_n where S_n is the n X n matrix S_n(i,j) = Sum_{d|i} d^j. - Benoit Cloitre, May 19 2002
Appears to be det(M_n) where M_n is the n X n matrix with m(i,j) = J_j(i) where J_k(n) denote the Jordan function of row k, column n (cf. A059380(m)). - Benoit Cloitre, May 19 2002
a(2n+1) = 1, 12, 34560, 125411328000, ... is the Hankel transform of A000182 (tangent numbers) = 1, 2, 16, 272, 7936, ...; example: det([1, 2, 16, 272; 2, 16, 272, 7936; 16, 272, 7936, 353792; 272, 7936, 353792, 22368256]) = 125411328000. - Philippe Deléham, Mar 07 2004
Determinant of the (n+1) X (n+1) matrix whose i-th row consists of terms 1 to n+1 of the Lucas sequence U(i,Q), for any Q. When Q=0, the Vandermonde matrix is obtained. - T. D. Noe, Aug 21 2004
Determinant of the (n+1) X (n+1) matrix A whose elements are A(i,j) = B(i+j) for 0 <= i,j <= n, where B(k) is the k-th Bell number, A000110(k) [I. Mezo, JIS 14 (2011) # 11.1.1]. - T. D. Noe, Dec 04 2004
The Hankel transform of the sequence A090365 is A000178(n+1); example: det([1,1,3; 1,3,11; 3,11,47]) = 12. - Philippe Deléham, Mar 02 2005
Theorem 1.3, page 2, of Polynomial points, Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6, provides an example of an Abelian quotient group of order (n-1) superfactorial, for each positive integer n. The quotient is obtained from sequences of polynomial values. - E. F. Cornelius, Jr. (efcornelius(AT)comcast.net), Apr 09 2007
Starting with offset 1 this is a 'Matryoshka doll' sequence with alpha=1, the multiplicative counterpart to the additive A000292. seq(mul(mul(i,i=alpha..k), k=alpha..n),n=alpha..12). - Peter Luschny, Jul 14 2009
For n>0, a(n) is also the determinant of S_n where S_n is the n X n matrix, indexed from 1, S_n(i,j)=sigma_i(j), where sigma_k(n) is the generalized divisor sigma function: A000203 is sigma_1(n). - Enrique Pérez Herrero, Jun 21 2010
a(n) is the multiplicative Wiener index of the (n+1)-vertex path. Example: a(4)=288 because in the path on 5 vertices there are 3 distances equal to 2, 2 distances equal to 3, and 1 distance equal to 4 (2*2*2*3*3*4=288). See p. 115 of the Gutman et al. reference. - Emeric Deutsch, Sep 21 2011
a(n-1) = Product_{j=1..n-1} j! = V(n) = Product_{1 <= i < j <= n} (j - i) (a Vandermondian V(n), see the Ahmed Fares May 06 2001 comment above), n >= 1, is in fact the determinant of any n X n matrix M(n) with entries M(n;i,j) = p(j-1,x = i), 1 <= i, j <= n, where p(m,x), m >= 0, are monic polynomials of exact degree m with p(0,x) = 1. This is a special x[i] = i choice in a general theorem given in Vein-Dale, p. 59 (written for the transposed matrix M(n;j,x_i) = p(i-1,x_j) = P_i(x_j) in Vein-Dale, and there a_{k,k} = 1, for k=1..n). See the Aug 26 2013 comment under A049310, where p(n,x) = S(n,x) (Chebyshev S). - Wolfdieter Lang, Aug 27 2013
a(n) is the number of monotonic magmas on n elements labeled 1..n with a symmetric multiplication table. I.e., Product(i,j) >= max(i,j); Product(i,j) = Product(j,i). - Chad Brewbaker, Nov 03 2013
The product of the pairwise differences of n+1 integers is a multiple of a(n) [and this does not hold for any k > a(n)]. - Charles R Greathouse IV, Aug 15 2014
a(n) is the determinant of the (n+1) X (n+1) matrix M with M(i,j) = (n+j-1)!/(n+j-i)!, 1 <= i <= n+1, 1 <= j <= n+1. - Stoyan Apostolov, Aug 26 2014
All terms are in A064807 and all terms after a(2) are in A005101. - Ivan N. Ianakiev, Sep 02 2016
Empirical: a(n-1) is the determinant of order n in which the (i,j)-th entry is the (j-1)-th derivative of x^(x+i-1) evaluated at x=1. - John M. Campbell, Dec 13 2016
Empirical: If f(x) is a smooth, real-valued function on an open neighborhood of 0 such that f(0)=1, then a(n) is the determinant of order n+1 in which the (i,j)-th entry is the (j-1)-th derivative of f(x)/((1-x)^(i-1)) evaluated at x=0. - John M. Campbell, Dec 27 2016
Also the automorphism group order of the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Is the zigzag Hankel transform of A000182. That is, a(2*n+1) is the Hankel transform of A000182 and a(2*n+2) is the Hankel transform of A000182(n+1). - Michael Somos, Mar 11 2020
Except for n = 0, 1, superfactorial a(n) is never a square (proof in link Mabry and Cormick, FFF 4 p. 349); however, when k belongs to A349079 (see for further information), there exists m, 1 <= m <= k such that a(k) / m! is a square. - Bernard Schott, Nov 29 2021

Examples

			a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 |
a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000.
a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12!
= 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1
= 2^56 * 3^26 * 5^11 * 7^6 * 11^2.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 545.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 231.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Programs

  • Magma
    [&*[Factorial(k): k in [0..n]]: n in [0..20]]; // Bruno Berselli, Mar 11 2015
    
  • Maple
    A000178 := proc(n)
        mul(i!,i=1..n) ;
    end proc:
    seq(A000178(n),n=0..10) ; # R. J. Mathar, Oct 30 2015
  • Mathematica
    a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* Stefan Steinerberger, Mar 10 2006 *)
    Table[BarnesG[n], {n, 2, 14}] (* Zerinvary Lajos, Jul 16 2009 *)
    FoldList[Times,1,Range[20]!] (* Harvey P. Dale, Mar 25 2011 *)
    RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)
    BarnesG[Range[2, 20]] (* Eric W. Weisstein, Jul 14 2017 *)
  • Maxima
    A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* Martin Ettl, Oct 23 2012 */
    
  • PARI
    A000178(n)=prod(k=2,n,k!) \\ M. F. Hasler, Sep 02 2007
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • PARI
    for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ Hugo Pfoertner, Apr 09 2020
    
  • Python
    A000178_list, n, m = [1], 1,1
    for i in range(1,100):
        m *= i
        n *= m
        A000178_list.append(n) # Chai Wah Wu, Aug 21 2015
    
  • Python
    from math import prod
    def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # Chai Wah Wu, Nov 26 2023
  • Ruby
    def mono_choices(a,b,n)
        n - [a,b].max
    end
    def comm_mono_choices(n)
        accum =1
        0.upto(n-1) do |i|
            i.upto(n-1) do |j|
                accum = accum * mono_choices(i,j,n)
            end
        end
        accum
    end
    1.upto(12) do |k|
        puts comm_mono_choices(k)
    end # Chad Brewbaker, Nov 03 2013
    

Formula

a(0) = 1, a(n) = n!*a(n-1). - Lee Hae-hwang, May 13 2003, corrected by Ilya Gutkovskiy, Jul 30 2016
a(0) = 1, a(n) = 1^n * 2^(n-1) * 3^(n-2) * ... * n = Product_{r=1..n} r^(n-r+1). - Amarnath Murthy, Dec 12 2003 [Formula corrected by Derek Orr, Jul 27 2014]
a(n) = sqrt(A055209(n)). - Philippe Deléham, Mar 07 2004
a(n) = Product_{i=1..n} Product_{j=0..i-1} (i-j). - Paul Barry, Aug 02 2008
log a(n) = 0.5*n^2*log n - 0.75*n^2 + O(n*log n). - Charles R Greathouse IV, Jan 13 2012
Asymptotic: a(n) ~ exp(zeta'(-1) - 3/4 - (3/4)*n^2 - (3/2)*n)*(2*Pi)^(1/2 + (1/2)*n)*(n+1)^((1/2)*n^2 + n + 5/12). For example, a(100) is approx. 0.270317...*10^6941. (See A213080.) - Peter Luschny, Jun 23 2012
G.f.: 1 + x/(U(0) - x) where U(k) = 1 + x*(k+1)! - x*(k+2)!/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 + 1/((k+1)!*x*G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k!*x). - Paul D. Hanna, Oct 02 2013
A203227(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 30 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = G(n+2), where G(n) is the Barnes G-function.
a(n) ~ exp(1/12 - n*(3*n+4)/4)*n^(n*(n+2)/2 + 5/12)*(2*Pi)^((n+1)/2)/A, where A is the Glaisher-Kinkelin constant (A074962).
Sum_{n>=0} (-1)^n/a(n) = A137986. (End)
0 = a(n)*a(n+2)^3 + a(n+1)^2*a(n+2)^2 - a(n+1)^3*a(n+3) for all n in Z (if a(-1)=1). - Michael Somos, Mar 11 2020
Sum_{n>=0} 1/a(n) = A287013 = 1/A137987. - Amiram Eldar, Nov 19 2020
a(n) = Wronskian(1, x, x^2, ..., x^n). - Mohammed Yaseen, Aug 01 2023
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Sum_{k=1..n} (Integral_{x=1..k+1} Psi(x) dx)).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + x*Psi(x)) dx).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + (n+1)*Psi(x) - log(Gamma(x))) dx).
Psi(x) is the digamma function. (End)

A058295 Products of distinct factorials.

Original entry on oeis.org

1, 2, 6, 12, 24, 48, 120, 144, 240, 288, 720, 1440, 2880, 4320, 5040, 5760, 8640, 10080, 17280, 30240, 34560, 40320, 60480, 80640, 86400, 103680, 120960, 172800, 207360, 241920, 362880, 483840, 518400, 604800, 725760, 967680, 1036800, 1209600
Offset: 1

Views

Author

Leroy Quet, Dec 07 2000

Keywords

Comments

(A075082(n)!)^2 is a member for n>0, for example, (6!)^2=6!*5!*3!. Factorials A000142 and superfactorials A000178 (without their first terms), double-superfactorials A098694 and product-of-next-n-factorials A074319 are all subsequences. Products-of-factorials A001013 is a supersequence. - Jonathan Sondow, Dec 18 2004
A000197(n)^2 is a member for n > 2, as ((n!)!)^2 = (n!)!*n!*(n!-1)!. - Jonathan Sondow, Dec 21 2004
Erdős & Graham show that there are exp((1+o(1))n log log n / log n) members of this sequence using no factorials above n.

Examples

			288 is included because 288 = 2! * 3! * 4!.
		

Crossrefs

Programs

  • Mathematica
    k=10; m=1; With[{p=With[{s=Subsets[Table[n!, {n, 2, k}]]}, Sort[Table[Apply[Times, s[[n]]], {n, Length[s]}]]]}, While[p[[m]]<(k+1)!, m++ ]; Union[Take[p, m-1]]] (* Jonathan Sondow *)
  • PARI
    list(lim)=my(v=List([1]),n=1,t=1);while((t=n++!)<=lim,for(i=1,#v,if(v[i]*t<=lim,listput(v,v[i]*t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Mar 26 2012

Extensions

Corrected by Jonathan Sondow, Dec 18 2004

A268504 a(n) = Product_{k=0..n} (3*k)!.

Original entry on oeis.org

1, 6, 4320, 1567641600, 750902834626560000, 981936389699695364014080000000, 6286723722110812136775527266768650240000000000, 321194638135877430211257700556824829511701622266265600000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Comments

Partial products of A100732. - Michel Marcus, Jul 06 2019

Crossrefs

Programs

  • Mathematica
    Table[Product[(3*k)!,{k,0,n}],{n,0,10}]
  • PARI
    {a(n) = prod(k=1, n, (3*k)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ Gamma(1/3)^(1/3) * 3^(3*n^2/2 + 2*n + 11/36) * 2^(n/2 + 1/3) * Pi^(n/2 + 1/3) * n^(3*n^2/2 + 2*n + 19/36) / (A^(1/3) * exp(9*n^2/4 + 2*n - 1/36)), where A = A074962 is the Glaisher-Kinkelin constant.

A268506 a(n) = Product_{k=0..n} (5*k)!.

Original entry on oeis.org

1, 120, 435456000, 569434649591808000000, 1385378702517271000054360965120000000000, 21488900044302744250061179567064173417691432878080000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Comments

Partial products of A100734. - Michel Marcus, Jul 06 2019

Crossrefs

Programs

  • Mathematica
    Table[Product[(5*k)!,{k,0,n}],{n,0,8}]
  • PARI
    {a(n) = prod(k=1, n, (5*k)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ Gamma(1/5)^(3/5) * Gamma(2/5)^(2/5) * Gamma(3/5)^(1/5) * 2^(n/2 - 1/10) * Pi^(n/2 - 1/10) * 5^(23/60 + 3*n + 5*n^2/2) * exp(1/60 - 3*n - 15*n^2/4) * n^(41/60 + 3*n + 5*n^2/2) / A^(1/5), where A = A074962 is the Glaisher-Kinkelin constant.

A168467 a(n) = Product_{k=0..n} ((2*k+2)*(2*k+3))^(n-k).

Original entry on oeis.org

1, 6, 720, 3628800, 1316818944000, 52563198423859200000, 327312129899898454671360000000, 428017682605583614976547335700480000000000, 152240508705590071980086429193304853792686080000000000000
Offset: 0

Views

Author

Paul Barry, Nov 26 2009

Keywords

Comments

Hankel transform of A000698(n+1).
The sequence 1,1,6,720,... with general term Product_{k=0..n, ((2k+1)(2k+0^k))^(n-k)} is the Hankel transform of A112934. - Paul Barry, Dec 04 2009
a(n) is also the determinant of the n X n matrix M(i,j) = i^(2*j)*sinh(2*j*arccsch(i))/(2*sqrt(i^2+1)), with i and j from 1 to n, which is the same matrix generated by sequences of length n by the linear recurrences with kernel { 2*(k^2 + z), -k^4 }, and initial conditions { 1, 2*(k^2 + z) }, with k from 1 to n, and z = 2. Regardless of the value of z, for every n, the determinant of the n X n matrix of polynomials generated gives always a(n) as result. - Federico Provvedi, Feb 01 2021

Examples

			From _Federico Provvedi_, Apr 01 2021: (Start)
From both formulas in the comment above and in particular with z=2 from the linear recurrences, the determinant of the 5 X 5 matrix: ( (1,6,35,204,1189), (1,12,128,1344,14080),(1,22,403,7084,123205), (1,36,1040,28224,749824), (1,54,2291,89964,3426181) ) = 1316818944000 = a(5).
For a generic z, the determinant doesn't change as shown in this example, where the determinant of the 3 X 3 square matrix:
( ( 1, 2*(z+1), (2*z + 1)*(2*z+3)  ),
  ( 1, 2*(z+4), 4*(z+6)*(z+2)      ),
  ( 1, 2*(z+9), (2*z + 9)(2*z + 27)) ) = 720 = a(3). (End)
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n^2 + 2*n + 23/24) Glaisher^(3/2) Pi^(-n/2 - 3/4) BarnesG[n + 2] BarnesG[n + 5/2]/E^(1/8), {n, 0, 10}] (* Vladimir Reshetnikov, Sep 06 2016 *)
    Table[Product[((2k+2)(2k+3))^(n-k),{k,0,n}],{n,0,10}] (* Harvey P. Dale, Dec 26 2019 *)
    Table[Det@Table[LinearRecurrence[{2*k^2,-k^4},{1, 2*k^2},n], {k, 1, n}], {n,1,20}] (* Federico Provvedi, Feb 01 2021 *)
    Det@Expand@Array[(#1^(2 #2))/(4 Sqrt[1 + #1^2])((Sqrt[1+1/#1^2]+1/#1)^(2 #2)-(Sqrt[1+1/#1^2]-1/#1)^(2 #2))&,{#,#}]&/@Range[20] (* Federico Provvedi, Apr 01 2021 *)
  • Python
    from math import prod
    def A168467(n): return prod(((m:=k+1<<1)*(m+1))**(n-k) for k in range(1,n+1))*3**n<Chai Wah Wu, Nov 26 2023

Formula

G.f.: Q(0)/(2*x) -1/x, where Q(k) = 1 + 1/(1 -(2*k+1)!*x/((2*k+1)!*x + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
a(n) = Product_{k=1..n} (2*k+1)!. - Vladimir Reshetnikov, Sep 06 2016
a(n) ~ A^(-1/2) * 2^(n^2 + 3*n + 53/24) * exp((-3/2)*n^2 + (-5/2)*n + 1/24) * n^(n^2 + (5/2)*n + 35/24) * Pi^((n+1)/2), where A = A074962 is the Glaisher-Kinkelin constant. - Vladimir Reshetnikov, Sep 06 2016
a(n) = A000178(2*n + 1) / A098694(n). - Vaclav Kotesovec, Oct 28 2017
a(n) = A202768(n)*A000142(n). - Federico Provvedi, Feb 01 2021
For n > 0, a(n) = n * (2*n+1) * sqrt(BarnesG(2*n)) * Gamma(2*n)^2 / (sqrt(Gamma(n)) * 2^((n-3)/2)). - Vaclav Kotesovec, Nov 27 2024

A268196 a(n) = Product_{k=0..n} binomial(3*k,k).

Original entry on oeis.org

1, 3, 45, 3780, 1871100, 5618913300, 104309506501200, 12129109415959536000, 8920608231265175901456000, 41809329673499408044341517200000, 1256161937180234817183361549396758000000, 243113461110708695347467432844366521953760000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[3k,k],{k,0,n}],{n,0,12}]
    FoldList[Times,Table[Binomial[3n,n],{n,0,15}]] (* Harvey P. Dale, Apr 23 2018 *)

Formula

a(n) = A^(7/6) * Gamma(1/3)^(1/3) * 3^(3*n^2/2 + 2*n + 11/36)* BarnesG(n + 4/3) * BarnesG(n + 5/3) / (exp(7/72) * 2^(n^2 + 2*n + 5/8) * Pi^(n/2 + 5/12) * BarnesG(n + 3/2) * BarnesG(n + 2)), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) ~ A^(7/6) * Gamma(1/3)^(1/3) * 3^(11/36 + 2*n + 3*n^2/2) * exp(n/2 - 7/72) / (2^(n^2 + 2*n + 7/8) * Pi^(n/2 + 2/3) * n^(n/2 + 25/72)), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) = A268504(n) / (A000178(n) * A098694(n)).

A268505 a(n) = Product_{k=0..n} (4*k)!.

Original entry on oeis.org

1, 24, 967680, 463520268288000, 9698137182219213471744000000, 23594617426193665303453830729600860160000000000, 14639242671589099207353038379393488170313478620292159897600000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Comments

Partial products of A100733. - Michel Marcus, Jul 06 2019

Crossrefs

Programs

  • Mathematica
    Table[Product[(4*k)!,{k,0,n}],{n,0,8}]
  • PARI
    {a(n) = prod(k=1, n, (4*k)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ Gamma(1/4)^(1/2) * 2^(5/6 + 11*n/2 + 4*n^2) * exp(1/48 - 5*n/2 - 3*n^2) * n^(29/48 + 5*n/2 + 2*n^2) * Pi^(1/4 + n/2) / A^(1/4), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) = A^(15/4) * sqrt(Gamma(1/4)) * exp(-5/16) * 2^(4*n^2 + 7*n/2 - 5/12) * BarnesG(n + 5/4) * BarnesG(n + 3/2) * BarnesG(n + 7/4) * BarnesG(n+2) / Pi^(3*n/2 + 1). - Vaclav Kotesovec, Apr 23 2024

A271946 a(n) = Product_{k=0..n} (6*k)!.

Original entry on oeis.org

1, 720, 344881152000, 2208058019165981638656000000, 1369986068925795885347091500568179543900160000000000, 363392722685428853076589064611759104109572860599125858715484081356800000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 17 2016

Keywords

Comments

The next term has 126 digits.
Partial products of A195390. - Michel Marcus, Jul 06 2019

Crossrefs

Programs

  • Mathematica
    Table[Product[(6*k)!,{k,0,n}],{n,0,8}]
  • PARI
    {a(n) = prod(k=1, n, (6*k)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ A^(-1/6) * exp(1/72 - 7*n/2 - 9*n^2/2) * n^(55/72 + 7*n/2 + 3*n^2) * 2^(1/72 + 4*n + 3*n^2) * 3^(47/72 + 7*n/2 + 3*n^2) * Pi^(n/2 - 1/3) * Gamma(1/3)^(5/3), where A = A074962 is the Glaisher-Kinkelin constant.

A271947 a(n) = Product_{k=0..n} (7*k)!.

Original entry on oeis.org

1, 5040, 439378587648000, 22448266013011335649028997120000000, 6844214664110424043644485692109939233534721371668480000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 17 2016

Keywords

Comments

The next term has 104 digits.
In general, for p > 0, Product_{k=0..n} (p*k)! = p^((n+1)*(n*p+1)/2) * (2*Pi)^((n+1)*(1-p)/2) * Product_{j=1..p} BarnesG(n+1+j/p) / BarnesG(j/p).
Equivalently, Product_{k=0..n} (p*k)! = A^(p - 1/p) * exp(1/(12*p) - p/12) * (2*Pi)^((1-p)*n/2) * p^(p*n^2/2 + (p+1)*n/2 - 1/(12*p)) * Product_{j=1..p} (BarnesG(n + 1 + j/p) / Gamma(j/p)^(j/p)), where A = A074962 is the Glaisher-Kinkelin constant.
Asymptotics: Product_{k=0..n} (p*k)! ~ exp(p/12 - (p+1)*n/2 - 3*p*n^2/4) * n^(1/4 + p/12 + 1/(12*p) + (p+1)*n/2 + p*n^2/2) * p^(1/2 + (p+1)*n/2 + p*n^2/2) * (2*Pi)^(n/2 - p/4 + 3/4) / (A^p * Product_{j=1..p} BarnesG(j/p)).
Equivalently, Product_{k=0..n} (p*k)! ~ A^(-1/p) * exp(1/(12*p) - (p+1)*n/2 - 3*p*n^2/4) * n^(1/4 + p/12 + 1/(12*p) + (p+1)*n/2 + p*n^2/2) * p^(-1/(12*p) + (p+1)*n/2 + p*n^2/2) * (2*Pi)^(n/2 + (p+1)/4) / Product_{j=1..p-1} Gamma(j/p)^(j/p), where A = A074962 is the Glaisher-Kinkelin constant.
The general formula for the product of Barnes-G functions is: Product_{j=1..p} BarnesG(j/p) = A^(1/p - p) * exp(p/12 - 1/(12*p)) * p^(1/2 + 1/(12*p)) * (2*Pi)^((1-p)/2) * Product_{j=1..p-1} Gamma(j/p)^(j/p).

Crossrefs

Cf. A000178 (p=1), A098694 (p=2), A268504 (p=3), A268505 (p=4), A268506 (p=5), A271946 (p=6).
Partial products of A195391.

Programs

  • Mathematica
    Table[Product[(7*k)!,{k,0,n}],{n,0,8}]
  • PARI
    {a(n) = prod(k=1, n, (7*k)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ A^(-1/7) * exp(1/84 - 4*n - 21*n^2/4) * n^(71/84 + 4*n + 7*n^2/2) * 7^(-1/84 + 4*n + 7*n^2/2) * (2*Pi)^(n/2 + 2) / (Gamma(1/7)^(1/7) * Gamma(2/7)^(2/7) * Gamma(3/7)^(3/7) * Gamma(4/7)^(4/7) * Gamma(5/7)^(5/7) * Gamma(6/7)^(6/7)), where A = A074962 is the Glaisher-Kinkelin constant.
Showing 1-10 of 18 results. Next