cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 285 results. Next

A348692 Triangle whose n-th row lists the integers m such that A000178(n) / m! is a square, where A000178(n) = n$ = 1!*2!*...*n! is the superfactorial of n; if there is no such m, then n-th row = 0.

Original entry on oeis.org

1, 2, 0, 2, 0, 0, 0, 3, 4, 0, 0, 0, 6, 0, 8, 9, 0, 8, 9, 0, 7, 0, 10, 0, 0, 0, 12, 0, 0, 0, 14, 0, 0, 0, 15, 16, 0, 18, 0, 18, 0, 0, 0, 20, 0, 0, 0, 22, 0, 0, 0, 24, 25, 0, 0, 0, 26, 0, 0, 0, 28, 0, 0, 0, 30, 0, 32, 0, 32, 0, 0, 0, 34, 0, 0, 0, 35, 36, 0, 0, 0, 38, 0, 0, 0, 40
Offset: 1

Views

Author

Bernard Schott, Oct 30 2021

Keywords

Comments

This sequence is the generalization of a problem proposed during the 17th Tournament of Towns (Spring 1996) and also during the first stage of the Moscow Mathematical Olympiad (1995-1996); the problem asked the question for n = 100 (see Andreescu-Gelca reference, Norman Do link, and Examples section).
Exhaustive results coming from Mabry-McCormick's link and adapted for OEIS:
-> n$ (A000178) is never a square if n > 1.
-> There is no solution if n is odd > 1, hence row(2q+1) = 0 when q > 0.
-> When n is even and there is a solution, then m belongs to {n/2 - 2, n/2 - 1, n/2, n/2 + 1, n/2 + 2}.
-> If 4 divides n (A008536), m = n/2 is always a solution because
(n$) / (n/2)! = ( 2^(n/4) * Product_{j=1..n/2} ((2j-1)!) )^2.
-> For other cases, see Formula section.
-> When n is even, there are 0, 1 or 2 solutions, so, the maximal length of a row is 2.
-> It is not possible to get more than three consecutive 0 terms, and three consecutive 0 terms correspond to three consecutive rows such that (n, n+1, n+2) = (4u+1, 4u+2, 4u+3) for some u >= 1.

Examples

			For n = 4, 4$ / 3! = 48, 4$ / 4! = 12 but 4$ / 2! = 12^2, hence, m = 2.
For n = 8, 8$ / 2! is not a square, but m_1 = 3 because 8$ / 3! = 29030400^2 and m_2 = 4 because 8$ / 4! = 14515200^2.
For n = 14, m_1 = 8 because 14$ / 8! = 1309248519599593818685440000000^2 and m_2 = 9 because 14$ / 9! = 436416173199864606228480000000^2.
For n = 16, m_1 = 8 because 16$ / 8! = 6848282921689337839624757371207680000000000^2 and m_2 = 9 because 16$ / 9! = 2282760973896445946541585790402560000000000^2.
For n = 18, m = 7 because 18$ / 7! = 29230177671473293820176594405114531928195727360000000000000^2 and there is no other solution.
For n = 100, m = 50, unique solution to the Olympiad problems.
Triangle begins:
    1;
    2;
    0;
    2;
    0;
    0;
    0;
    8,  9;
    0;
    ...
		

References

  • Titu Andreescu and Rǎzvan Gelca, Putnam and Beyond, New York, Springer, 2007, problem 725, pp. 253 and 686.
  • Peter J. Taylor and A. M. Storozhev, Tournament of Towns 1993-1997, Book 4, Tournament 17, Spring 1996, O Level, Senior questions, Australian Mathematics Trust, 1998, problem 3, p. 96.

Crossrefs

Programs

  • PARI
    sf(n)=prod(k=2, n, k!); \\ A000178
    row(n) = my(s=sf(n)); Vec(select(issquare, vector(n, k, s/k!), 1));
    lista(nn) = {my(list = List()); for (n=1, nn, my(r=row(n)); if (#r, for (k=1, #r, listput(list, r[k])), listput(list, 0));); Vec(list);} \\ Michel Marcus, Oct 30 2021

Formula

When there are two such integers m, then m_1 < m_2.
If n = 8*q^2 (A139098), then m_1 = n/2 - 1 = 4q^2-1 (see example for n=8).
If n = 8q*(q+1) (A035008), then m_2 = n/2 + 1 = (2q+1)^2 (see example for n=16).
if n = 4q^2 - 2 (A060626), then m_1 = n/2 + 1 = 2q^2 (see example for n=14).
If n = 2q^2, q>1 in A001541, then m = n/2 - 2 = q^2-2 (see example for n=18).
If n = 2q^2-4, q>1 in A001541, then m_2 = n/2 + 2 = q^2 (see example for n=14).

A336496 Products of superfactorials (A000178).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 34560, 36864, 41472, 49152, 55296
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A317804 in having 34560, which is the first term with more than two distinct prime factors.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   48: {1,1,1,1,2}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

A001013 is the version for factorials, with complement A093373.
A181818 is the version for superprimorials, with complement A336426.
A336497 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178.
A174605 is the maximum prime multiplicity in A000178.
A303279 counts prime factors of superfactorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[1000],facsusing[Rest[Array[supfac,30]],#]!={}&]

A349079 Numbers k such that there exists m, 1 <= m <= k with the property that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

1, 2, 4, 8, 12, 14, 16, 18, 20, 24, 28, 32, 34, 36, 40, 44, 48, 52, 56, 60, 62, 64, 68, 72, 76, 80, 84, 88, 92, 96, 98, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 142, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 194, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 1

Views

Author

Bernard Schott, Nov 07 2021

Keywords

Comments

If k is a term, then A348692(k) lists integers m such that k$ / m! is a square; and for each k, there exist only one (A349080) or two (A349081) such integers m.
See A348692 for further information, links and references about Olympiads.
Except for 1, all terms are even, and, when k is such an even term, corresponding m belong(s) to {k/2 - 2, k/2 - 1, k/2, k/2 + 1, k/2 + 2}.
This sequence is the union of {1} and of three infinite and disjoint subsequences:
-> A008586, so every positive multiple of 4 is a term and in this case, for k=4*q, (k$)/(k/2)! = ( 2^(k/4) * Product_{j=1..k/2} ((2j-1)!) )^2 (see example 4).
-> A060626, so every k = 4*q^2 - 2 (q >= 1) is a term (see examples 2 and 14).
-> 2*A055792 = {k = 2q^2 with q>1 in A001541} = {18, 578, ...} (see example 18).

Examples

			2 is a term as 2$ / 2! = 1^2.
4 is a term as 4$ / 2! = 12^2.
14 is a term as 14$ / 8! = 1309248519599593818685440000000^2 and also 14$ / 9! = 436416173199864606228480000000^2.
18 is a term as 18$ / 7! = 29230177671473293820176594405114531928195727360000000000000^2.
		

Crossrefs

Programs

  • Mathematica
    supfact[n_] := supfact[n] = BarnesG[n + 2]; fact[n_] := fact[n] = n!; q[k_] := AnyTrue[Range[k], IntegerQ @ Sqrt[supfact[k]/fact[#]] &]; Select[Range[230], q] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    f(n) = prod(k=2, n, k!); \\ A000178
    isok(k) = my(sf=f(k)); for (m=1, k, if (issquare(sf/m!), return(1))); \\ Michel Marcus, Nov 08 2021

A107254 a(n) = SF(2n-1)/SF(n-1)^2 where SF = A000178.

Original entry on oeis.org

1, 1, 12, 8640, 870912000, 22122558259200000, 222531556847250309120000000, 1280394777025250130271722799104000000000, 5746332926632566442385615219551212618645504000000000000
Offset: 0

Views

Author

Henry Bottomley, May 14 2005

Keywords

Comments

Inverse product of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 12 2006
The n X n matrix with A(i,j) = 1/(i+j-1)! (i,j = 1..n) has determinant (-1)^floor(n/2)/a(n). - Mikhail Lavrov, Nov 01 2022

Examples

			a(3) = 1!*2!*3!*4!*5!/(1!*2!*1!*2!) = 34560/4 = 8640.
n = 2: HilbertMatrix[n,n]
  1/1 1/2
  1/2 1/3
so a(2) = 1 / (1 * 1/2 * 1/2 * 1/3) = 12.
The n X n Hilbert matrix begins:
  1/1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Programs

  • Magma
    A107254:= func< n | n eq 0 select 1 else (&*[Factorial(n+j)/Factorial(j): j in [0..n-1]]) >;
    [A107254(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
  • Maple
    a:= n-> mul((n+i)!/i!, i=0..n-1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 23 2012
  • Mathematica
    Table[Product[(i+j-1),{i,1,n},{j,1,n}], {n,1,10}] (* Alexander Adamchuk, Apr 12 2006 *)
    Table[n!*BarnesG[2n+1]/(BarnesG[n+2]*BarnesG[n+1]), {n,0,12}] (* G. C. Greubel, Apr 21 2021 *)
  • Sage
    a = lambda n: prod(rising_factorial(k,n) for k in (1..n))
    print([a(n) for n in (0..10)]) # Peter Luschny, Nov 29 2015
    

Formula

a(n) = n!*(n+1)!*(n+2)!*...*(2n-1)!/(0!*1!*2!*3!*...*(n-1)!) = A000178(2n-1)/A000178(n-1)^2 = A079478(n)/A000984(n) = A079478(n-1)*A009445(n-1) = A107252(n)*A000142(n) = A088020(n)/A039622(n).
a(n) = 1/Product_{j=1..n} ( Product_{i=1..n} 1/(i+j-1) ). - Alexander Adamchuk, Apr 12 2006
a(n) = 2^(n*(n-1)) * A136411(n) for n > 0 . - Robert Coquereaux, Apr 06 2013
a(n) = A136411(n) * A053763(n) for n > 0. [Following remark from Robert Coquereaux] - M. F. Hasler, Apr 06 2013
a(n) ~ A * 2^(2*n^2-1/12) * n^(n^2+1/12) / exp(3*n^2/2+1/12), where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 10 2015
a(n) = Product_{k=1..n} rf(k,n) where rf denotes the rising factorial. - Peter Luschny, Nov 29 2015
a(n) = (n! * G(2*n+1))/(G(n+1)*G(n+2)), where G(n) is the Barnes G - function. - G. C. Greubel, Apr 21 2021

A203417 a(n) = A203415(n)/A000178(n).

Original entry on oeis.org

1, 3, 15, 140, 700, 2520, 44352, 2196480, 47567520, 634233600, 51753461760, 13984935444480, 1448751906201600, 82605199597240320, 32797812715211980800, 5296846753506734899200, 483765735240908144640000, 28985693293514522492928000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Magma
    A018252:=[n : n in [1..250] | not IsPrime(n) ];
    BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
    v:= func< n | n eq 1 select 1 else (&*[(&*[A018252[k+2] - A018252[j+1]: j in [0..k]]): k in [0..n-2]]) >;
    [v(n)/BarnesG(n+1): n in [1..30]]; // G. C. Greubel, Feb 29 2024
    
  • Mathematica
    z=20;
    nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
    f[j_]:= nonprime[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,1,n}];
    Table[v[n], {n,1,z}]             (* A203415 *)
    Table[v[n + 1]/v[n], {n,1,z}]    (* A203416 *)
    Table[v[n]/d[n], {n,1,z}]        (* this sequence *)
  • SageMath
    A018252=[n for n in (1..250) if not is_prime(n)]
    def BarnesG(n): return product(factorial(j) for j in range(1, n-1))
    def v(n): return product(product(A018252[k-1]-A018252[j-1] for j in range(1,k)) for k in range(2,n+1))
    [v(n)/BarnesG(n+1) for n in range(1,31)] # G. C. Greubel, Feb 29 2024

A203471 a(n) = v(n)/A000178(n), v = A203470, A000178 = (superfactorials).

Original entry on oeis.org

1, 5, 105, 8820, 2910600, 3745942200, 18748440711000, 364619674947528000, 27558684271884061296000, 8100324068034882136733280000, 9267305355220395466643896716480000, 41308086890359390753018505224037952000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[Factorial(2*k+1)/(Factorial(k-1)*Factorial(k+2)): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= j+1; z = 16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n, z}]           (* A203470 *)
    Table[v[n+1]/v[n], {n, z-1}]  (* A102693 *)
    Table[v[n]/d[n], {n, 20}]     (* A203471 *)
    (* Second program *)
    Table[Product[Gamma[2*j+2]/(Gamma[j]*Gamma[j+3]), {j,n}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
  • SageMath
    [product(gamma(2*k+4)/(gamma(k+1)*gamma(k+4)) for k in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023

Formula

From G. C. Greubel, Aug 29 2023: (Start)
a(n) = Product_{j=1..n} Gamma(2*j+2)/(Gamma(j)*Gamma(j+3)).
a(n) = (2/sqrt(Pi))*( 2^(n+1)^2 * BarnesG(n+5/2) /(Pi^(n/2) * Gamma(n+2)*Gamma(n+3)*BarnesG(3/2)*BarnesG(n+1)) ).
a(n) = (BarnesG(n+2)/(2^n * BarnesG(n+1))) * Product_{j=1..n} Catalan(j+1). (End)
a(n) ~ A^(3/2) * 2^(n^2 + 2*n + 41/24) * exp(n/2 - 1/8) / (n^(n/2 + 23/8) * Pi^(n/2 + 1)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 19 2023
a(n) = Product_{1 <= j <= i <= n-1} (i + j + 3)/(i - j + 1). - Peter Bala, Oct 25 2024

A287013 Decimal expansion of Sum_{n>=0} 1/A000178(n).

Original entry on oeis.org

2, 5, 8, 6, 8, 3, 4, 5, 3, 0, 9, 3, 6, 4, 7, 1, 9, 0, 1, 4, 9, 8, 8, 4, 7, 4, 4, 1, 6, 9, 1, 9, 4, 3, 4, 7, 1, 7, 3, 3, 5, 7, 0, 9, 0, 1, 2, 7, 8, 8, 7, 7, 9, 4, 4, 7, 5, 1, 4, 8, 4, 8, 4, 7, 9, 5, 4, 6, 2, 0, 6, 0, 2, 5, 4, 9, 7, 0, 0, 8, 3, 6, 8, 2, 2, 7, 3, 7, 3, 3, 8, 7, 8, 8, 1, 4, 3, 1, 5, 3, 2, 7, 1, 6, 1, 0, 9, 0, 6
Offset: 1

Views

Author

Keywords

Examples

			2.58683453093647190149884744169194347173357090127887794475148...
		

Crossrefs

Programs

  • Mathematica
    NSum[1/BarnesG[n], {n, 2, Infinity}, WorkingPrecision -> 115] // RealDigits // First (* Jean-François Alcover, Oct 27 2020 *)
  • PARI
    suminf(n=0, 1/prod(k=2, n, k!)) \\ Michel Marcus, Aug 01 2017

Formula

Equals 1/A137987. - Amiram Eldar, Nov 19 2020

Extensions

More terms from Michel Marcus, Aug 01 2017

A349080 Numbers k for which there exists only one integer m with 1 <= m <= k such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

1, 2, 4, 12, 18, 20, 24, 28, 34, 36, 40, 44, 52, 56, 60, 62, 64, 68, 76, 80, 84, 88, 92, 98, 100, 104, 108, 112, 116, 120, 124, 132, 136, 140, 142, 144, 148, 152, 156, 164, 168, 172, 176, 180, 184, 188, 192, 194, 196, 204, 208, 212, 216, 220, 224, 228, 232, 236, 244, 248, 252, 254, 256
Offset: 1

Views

Author

Bernard Schott, Nov 20 2021

Keywords

Comments

This sequence is the union of {1} and of three infinite and disjoint subsequences.
-> Numbers k divisible by 4 but not of the form 8q^2 or 8q(q+1) = {4, 12, 20, 24, 28, ...} (see A182834). For these numbers, the corresponding unique m = k/2 (see example for k = 4).
-> Even numbers k not divisible by 4 and of the form k = 2*A055792 = 2*q^2, q>1 in A001541 = {18, 578, ...}. For these numbers, the corresponding unique m = k/2 - 2 = q^2-2 (see example for k = 18)
-> Even numbers k not divisible by 4, that are in A060626 but not of the form k=2q^2-4 with q>1 in A001541 = {2, 34, 62, 98, 142, 194, ...} (A349496). For these numbers, the corresponding unique m = k/2 + 1 (see example for k = 2).
See A348692 for further information.

Examples

			For k = 2, 2$ / 2! = 1^2, hence 2 is a term.
For k = 4, 4$ /1! = 288, 4$ / 3! = 48, 4$ / 4! = 12 but for m = 2, 4$ / 2! = 12^2, hence 4 is a term.
For k = 18 and m = 7, we have 18$ / 7! = 29230177671473293820176594405114531928195727360000000000000^2 and there is no other solution m, hence 18 is a term.
		

Crossrefs

Programs

A203317 a(n) = A203315(n)/A000178(n) where A000178=(superfactorials).

Original entry on oeis.org

1, 2, 8, 256, 10240, 3440640, 1233125376, 4058744094720, 286551971651911680, 13351029463205868994560, 18128348229848045861669437440, 80945830355202461675325011924090880, 223346912509970707926726595810215906508800
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    f[j_] := Prime[j + 1]; z = 17;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]
    Table[v[n], {n, 1, z}]                  (* A203315 *)
    Table[v[n + 1]/(2 v[n]), {n, 1, z - 1}] (* A203316 *)
    Table[v[n]/d[n], {n, 1, 20}]            (* A203317 *)

A203420 a(n) = A203418(n)/A000178(n).

Original entry on oeis.org

1, 2, 8, 20, 40, 384, 10240, 126720, 1013760, 48660480, 7612661760, 473174507520, 16701626253312, 4036421002199040, 407426244909465600, 23814785343474892800, 932976775107465707520, 26694111965427724713984, 9044593230639040844267520
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    A002808:=[n: n in [2..250] | not IsPrime(n)];
    BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
    a:= func< n | n eq 1 select 1 else (&*[(&*[A002808[k+2] - A002808[j+1]: j in [0..k]]): k in [0..n-2]])/BarnesG(n+1) >;
    [a(n): n in [1..40]]; // G. C. Greubel, Feb 24 2024
    
  • Mathematica
    composite = Select[Range[100], CompositeQ]; (* A002808 *)
    z = 20;
    f[j_]:= composite[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}];
    d[n_]:= Product[(i-1)!, {i, 1, n}];
    Table[v[n], {n,z}]           (* A203418 *)
    Table[v[n+1]/v[n], {n,z}]    (* A203419 *)
    Table[v[n]/d[n], {n,z}]      (* this sequence *)
  • SageMath
    A002808=[n for n in (2..250) if not is_prime(n)]
    def BarnesG(n): return product(factorial(j) for j in range(1,n-1))
    def a(n): return product(product(A002808[k+1] - A002808[j] for j in range(k+1)) for k in range(n-1))/BarnesG(n+1)
    [a(n) for n in range(1,41)] # G. C. Greubel, Feb 24 2024
Showing 1-10 of 285 results. Next