cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203418 Vandermonde determinant of the first n composite numbers (A002808).

Original entry on oeis.org

1, 2, 16, 240, 11520, 13271040, 254803968000, 15892123484160000, 5126163351050649600000, 89288743527804466888704000000, 50689719717698351557731837542400000000, 125765178831579421305165126665125232640000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203419, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203420.

Crossrefs

Programs

  • Magma
    A002808:=[n: n in [2..250] | not IsPrime(n)];
    a:= func< n | n eq 0 select 1 else (&*[(&*[A002808[k+2] - A002808[j+1]: j in [0..k]]): k in [0..n-1]]) >;
    [a(n): n in [0..20]]; // G. C. Greubel, Feb 24 2024
    
  • Mathematica
    composite = Select[Range[100], CompositeQ]; (* A002808 *)
    z = 20;
    f[j_]:= composite[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j, 1, k-1}], {k, 2, n}];
    d[n_]:= Product[(i - 1)!, {i, 1, n}];
    Table[v[n], {n,z}]             (* this sequence *)
    Table[v[n+1]/v[n], {n,z}]      (* A203419 *)
    Table[v[n]/d[n], {n,z}]        (* A203420 *)
  • SageMath
    A002808=[n for n in (2..250) if not is_prime(n)]
    def a(n): return product(product( A002808[k+1] - A002808[j] for j in range(k+1)) for k in range(n))
    [a(n) for n in range(15)] # G. C. Greubel, Feb 24 2024

A203419 a(n) = A203418(n+1)/A203418(n).

Original entry on oeis.org

2, 8, 15, 48, 1152, 19200, 62370, 322560, 17418240, 567705600, 2481078600, 16907304960, 1504935936000, 8799558768000, 76435881984000, 819678899239200, 10176845001523200, 2169274855587840000, 215013524533936128000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    A002808:=[n: n in [2..250] | not IsPrime(n)];
    a:= func< n | (&*[A002808[n+1] - A002808[j+1]: j in [0..n-1]]) >;
    [a(n): n in [1..40]]; // G. C. Greubel, Feb 24 2024
    
  • Mathematica
    composite = Select[Range[100], CompositeQ]; (* A002808 *)
    z = 20;
    f[j_]:= composite[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}];
    d[n_]:= Product[(i-1)!, {i, 1, n}];
    Table[v[n], {n,z}]           (* A203418 *)
    Table[v[n+1]/v[n], {n,z}]    (* this sequence *)
    Table[v[n]/d[n], {n,z}]      (* A203420 *)
  • SageMath
    A002808=[n for n in (2..250) if not is_prime(n)]
    def a(n): return product(A002808[n] - A002808[j] for j in range(n))
    [a(n) for n in range(1,41)] # G. C. Greubel, Feb 24 2024

A203533 a(n) = A203530(n)/A000178(n-1); A000178 = (superfactorials).

Original entry on oeis.org

1, 10, 840, 464100, 1481407200, 32851686067200, 5186361382800998400, 4436556151786001058816000, 19667253420867342693731328000000, 605862171333980479840975997239296000000, 132207384898194165523202154782408753283072000000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

It is conjectured that every term is an integer.

Crossrefs

Programs

  • Mathematica
    t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
    composite = Rest[Rest[Union[t]]]       (* A002808 *)
    f[j_] := composite[[j]]; z = 20;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]  (* A000178 *)
    Table[v[n], {n, 1, z}]                 (* A203530 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]    (* A203532 *)
    Table[v[n]/d[n], {n, 1, 20}]           (* A203533 *)
Showing 1-3 of 3 results.