cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A203530 a(n) = Product_{1 <= i < j <= n} (c(i) + c(j)); c = A002808 = composite numbers.

Original entry on oeis.org

1, 10, 1680, 5569200, 426645273600, 1135354270482432000, 129053267560513803386880000, 556394398742051964595520667648000000, 99449133623220179596974346585642106880000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

Each term divides its successor, as in A203530.
It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n); as in A203533.
See A093883 for a guide to related sequences.

Crossrefs

Programs

  • Maple
    c:= proc(n) option remember; local k; if n=1 then 4
          else for k from 1+c(n-1) while isprime(k) do od; k fi
        end:
    a:= n-> mul(mul(c(i)+c(j), i=1..j-1), j=2..n):
    seq(a(n), n=1..10);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
    composite = Rest[Rest[Union[t]]]       (* A002808 *)
    f[j_] := composite[[j]]; z = 20;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]  (* A000178 *)
    Table[v[n], {n, 1, z}]                 (* A203530 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]    (* A203532 *)
    Table[v[n]/d[n], {n, 1, 20}]           (* A203533 *)

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A203532 v(n+1)/v(n), where v=A203530.

Original entry on oeis.org

10, 168, 3315, 76608, 2661120, 113667840, 4311354600, 178738560000, 11178747740160, 791853627801600, 44783640216315000, 2693449157020876800, 246209683227475968000, 17126298576096297588000, 1253392853589570355200000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
    composite = Rest[Rest[Union[t]]]       (* A002808 *)
    f[j_] := composite[[j]]; z = 20;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]  (* A000178 *)
    Table[v[n], {n, 1, z}]                 (* A203530 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]    (* A203532 *)
    Table[v[n]/d[n], {n, 1, 20}]           (* A203533 *)
Showing 1-2 of 2 results.