Original entry on oeis.org
2, 8, 15, 48, 1152, 19200, 62370, 322560, 17418240, 567705600, 2481078600, 16907304960, 1504935936000, 8799558768000, 76435881984000, 819678899239200, 10176845001523200, 2169274855587840000, 215013524533936128000
Offset: 1
-
A002808:=[n: n in [2..250] | not IsPrime(n)];
a:= func< n | (&*[A002808[n+1] - A002808[j+1]: j in [0..n-1]]) >;
[a(n): n in [1..40]]; // G. C. Greubel, Feb 24 2024
-
composite = Select[Range[100], CompositeQ]; (* A002808 *)
z = 20;
f[j_]:= composite[[j]];
v[n_]:= Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}];
d[n_]:= Product[(i-1)!, {i, 1, n}];
Table[v[n], {n,z}] (* A203418 *)
Table[v[n+1]/v[n], {n,z}] (* this sequence *)
Table[v[n]/d[n], {n,z}] (* A203420 *)
-
A002808=[n for n in (2..250) if not is_prime(n)]
def a(n): return product(A002808[n] - A002808[j] for j in range(n))
[a(n) for n in range(1,41)] # G. C. Greubel, Feb 24 2024
Original entry on oeis.org
1, 2, 8, 20, 40, 384, 10240, 126720, 1013760, 48660480, 7612661760, 473174507520, 16701626253312, 4036421002199040, 407426244909465600, 23814785343474892800, 932976775107465707520, 26694111965427724713984, 9044593230639040844267520
Offset: 1
-
A002808:=[n: n in [2..250] | not IsPrime(n)];
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
a:= func< n | n eq 1 select 1 else (&*[(&*[A002808[k+2] - A002808[j+1]: j in [0..k]]): k in [0..n-2]])/BarnesG(n+1) >;
[a(n): n in [1..40]]; // G. C. Greubel, Feb 24 2024
-
composite = Select[Range[100], CompositeQ]; (* A002808 *)
z = 20;
f[j_]:= composite[[j]];
v[n_]:= Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}];
d[n_]:= Product[(i-1)!, {i, 1, n}];
Table[v[n], {n,z}] (* A203418 *)
Table[v[n+1]/v[n], {n,z}] (* A203419 *)
Table[v[n]/d[n], {n,z}] (* this sequence *)
-
A002808=[n for n in (2..250) if not is_prime(n)]
def BarnesG(n): return product(factorial(j) for j in range(1,n-1))
def a(n): return product(product(A002808[k+1] - A002808[j] for j in range(k+1)) for k in range(n-1))/BarnesG(n+1)
[a(n) for n in range(1,41)] # G. C. Greubel, Feb 24 2024
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A203530
a(n) = Product_{1 <= i < j <= n} (c(i) + c(j)); c = A002808 = composite numbers.
Original entry on oeis.org
1, 10, 1680, 5569200, 426645273600, 1135354270482432000, 129053267560513803386880000, 556394398742051964595520667648000000, 99449133623220179596974346585642106880000000000
Offset: 1
-
c:= proc(n) option remember; local k; if n=1 then 4
else for k from 1+c(n-1) while isprime(k) do od; k fi
end:
a:= n-> mul(mul(c(i)+c(j), i=1..j-1), j=2..n):
seq(a(n), n=1..10); # Alois P. Heinz, Jul 23 2017
-
t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
composite = Rest[Rest[Union[t]]] (* A002808 *)
f[j_] := composite[[j]]; z = 20;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203530 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203532 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203533 *)
Showing 1-4 of 4 results.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions